

IEEE International Conference on Communications 14-23 June 2021 // Virtual / Montreal

DRL-SFCP: Adaptive Service Function Chains Placement with Deep Reinforcement Learning

Tianfu Wang, Qilin Fan*, Xiuhua Li, Xu Zhang, Qingyu Xiong, Shu Fu and Min Gao

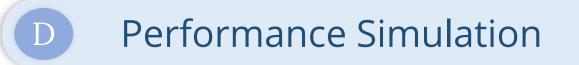
Presenter

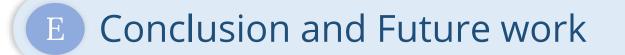
Content

Introduction on NFV

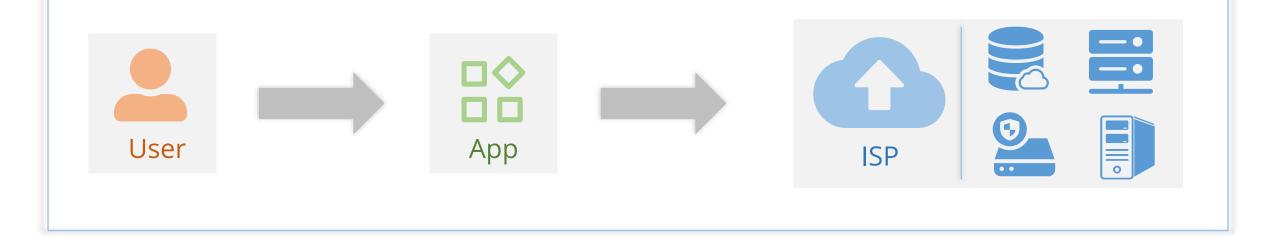
A

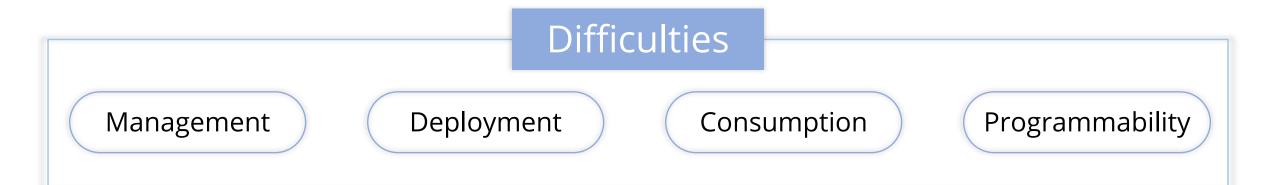


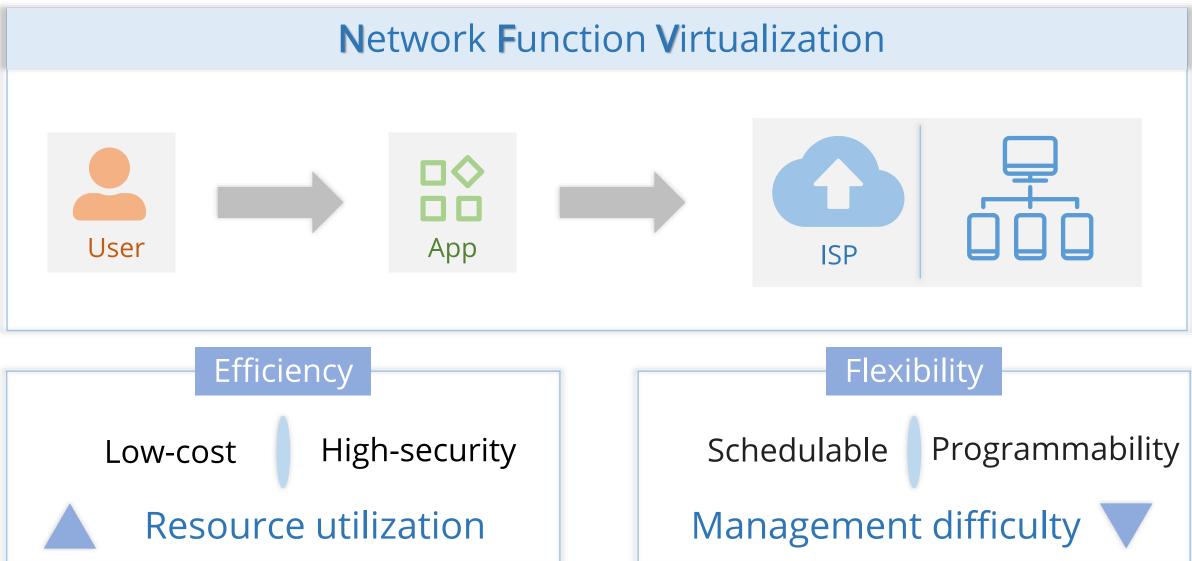


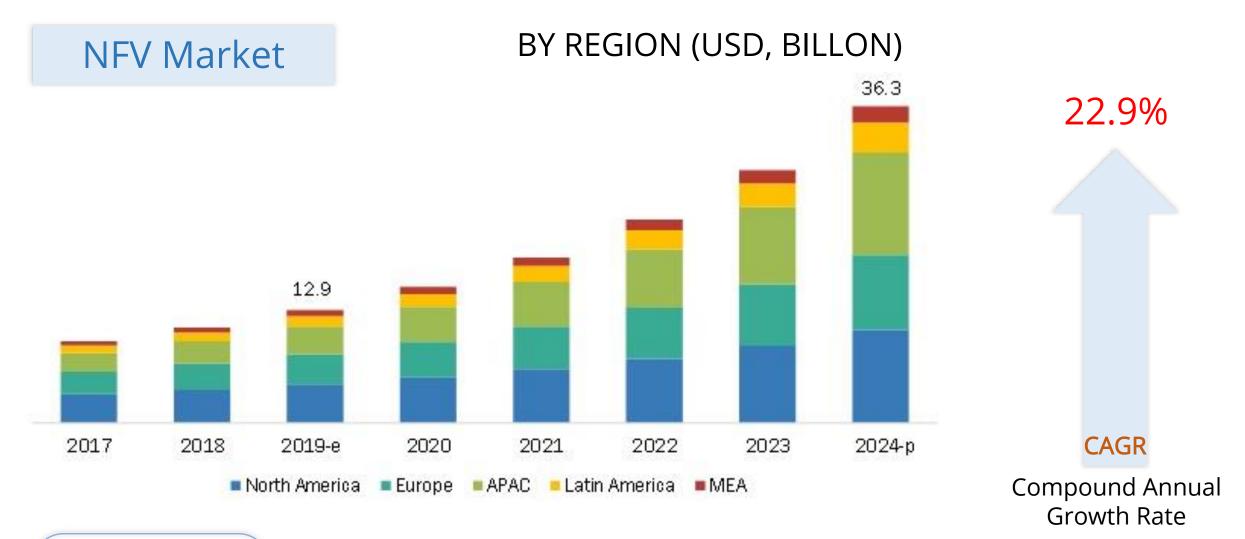


Traditional Network Architecture



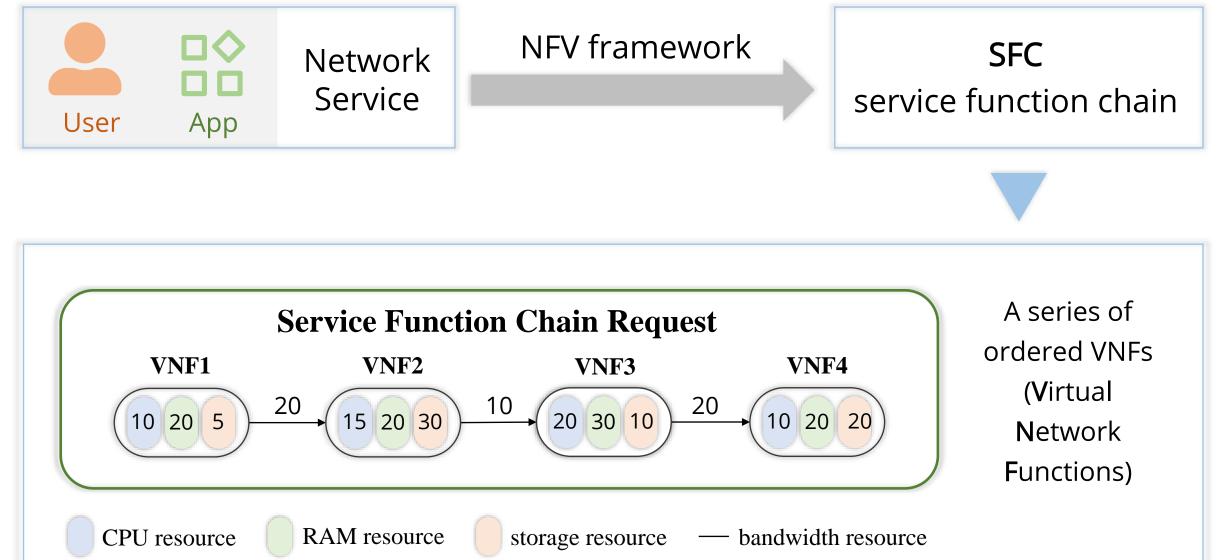


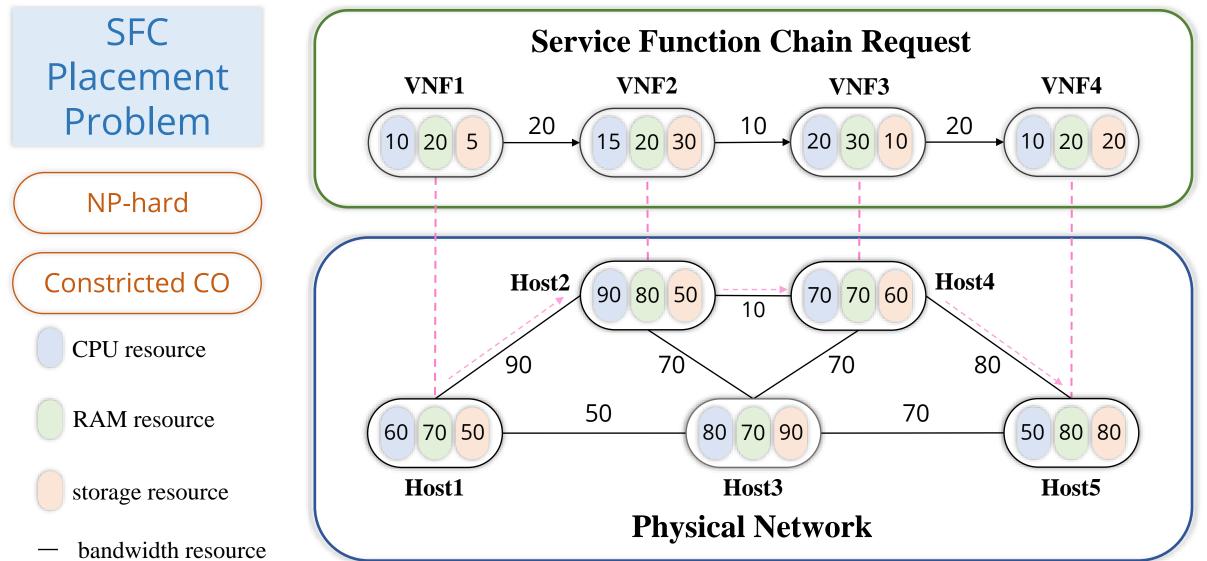




the growing need for advanced network management systems to handle the increasing network traffic and complexities.

Major Factors





Existing Solutions

A Mathematical optimization-based

Require the prior knowledge of SFCs

B) (Meta) Heuristic-based

Fall into the local optimum and static scene

Reinforcement learning-based

Large search space & manually selected features

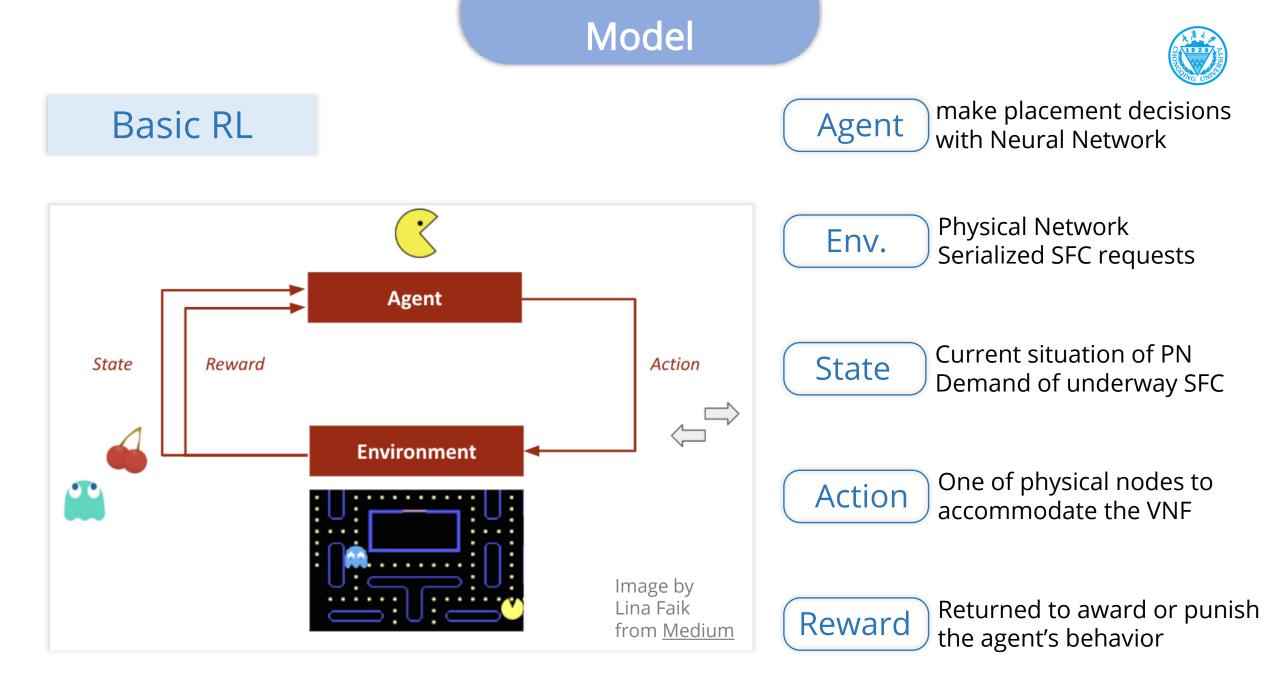
Integer Linear Programming Binary Integer Programming Integer Linear Programming

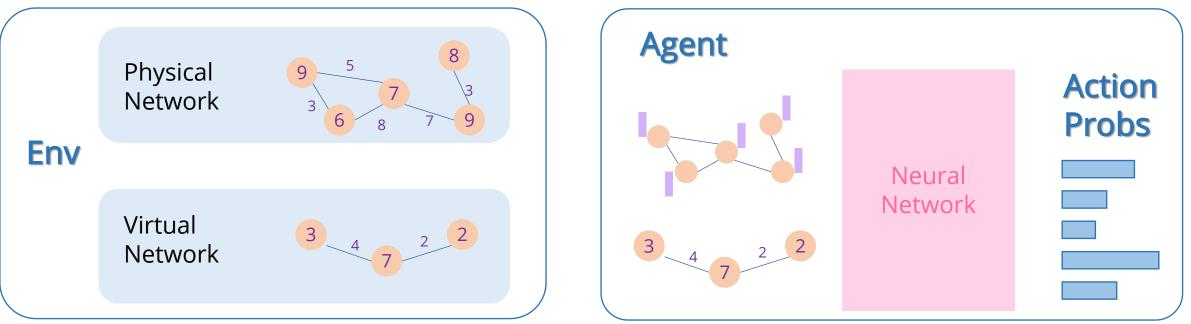
Global Resource Control Node Rank based on degree Constructive Particle Swarm

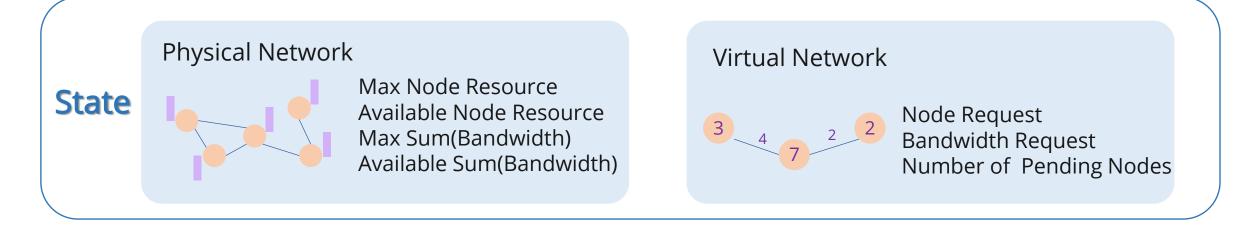
Q learning-based Dynamic programming-based Policy gradient-based

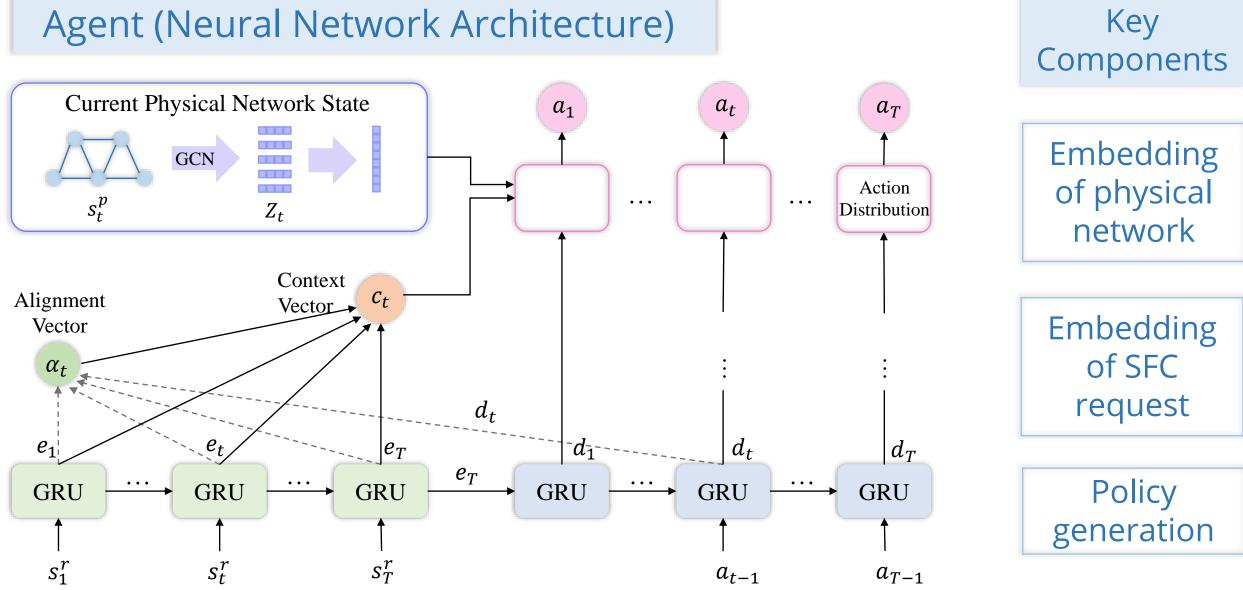
Formulation

System		
Physical networ	${f <}$ A weighted undirected graph G'	= (N', L')
SFC request	A weighted directed graph G^i	$= (N^i, L^i)$
Constraints		
Node resources $\sum_{n^i} \phi_{n'}^{n^i}$	$r_{n^{i},k} \leq R^{r}_{n',k}, \forall n' \in N', \forall k \in K$ $\sum_{n'} \phi^{n^{i}}_{n'} \leq 1, \forall n^{i} \in N^{i}$	Deployment constraint
Link bandwidth $\sum_{l^i} \phi_{l'}^{l^i} b$	$p_{l^{i}} \leq B_{l'}^{r}, \forall l' \in L' \qquad \sum_{l' \in I(n')} \phi_{l'}^{l^{i}} - \sum_{l' \in O(n')} \phi_{l'}^{l^{i}} = \phi_{n'}^{n^{i}_{d}} - \phi_{n'}^{n^{i}_{s}}, \forall l^{i} \in L^{i},$	$l' \in L'$ Path constraint
Objective	Maximize the long-term average revenue	
$Max \ R(\pi) = \lim_{\tau \to \infty} \frac{1}{\tau} \sum_{i \in I_\tau} rev$	(<i>i</i>) Single SFC $rev(i) = \begin{cases} \mu_k \sum_{n^i} r_{n^i,k} + \eta \sum_{l^i} b_{l^i}, \\ 0, \end{cases}$	if <i>i</i> is accepted, otherwise,

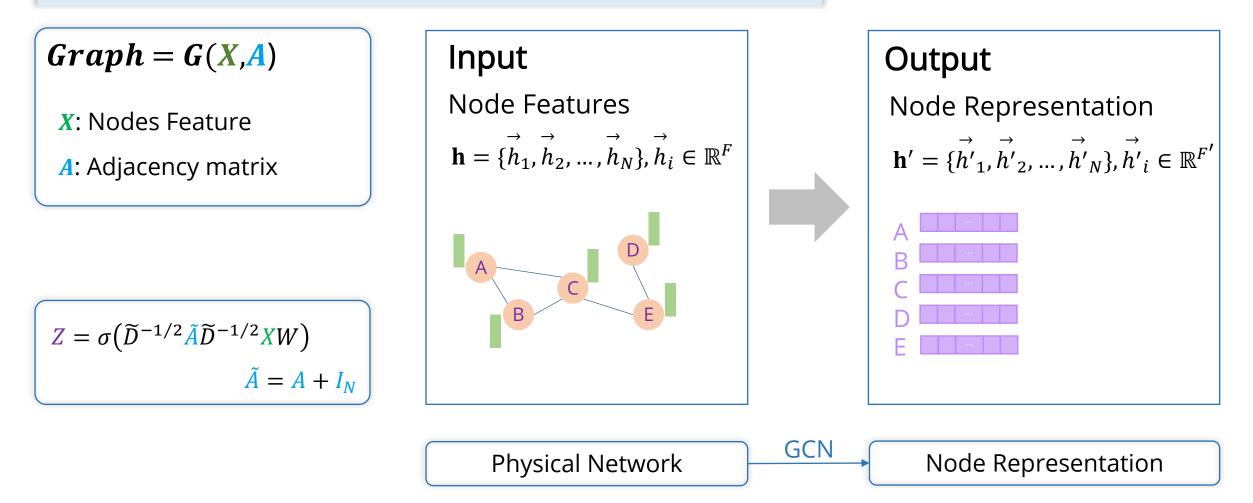


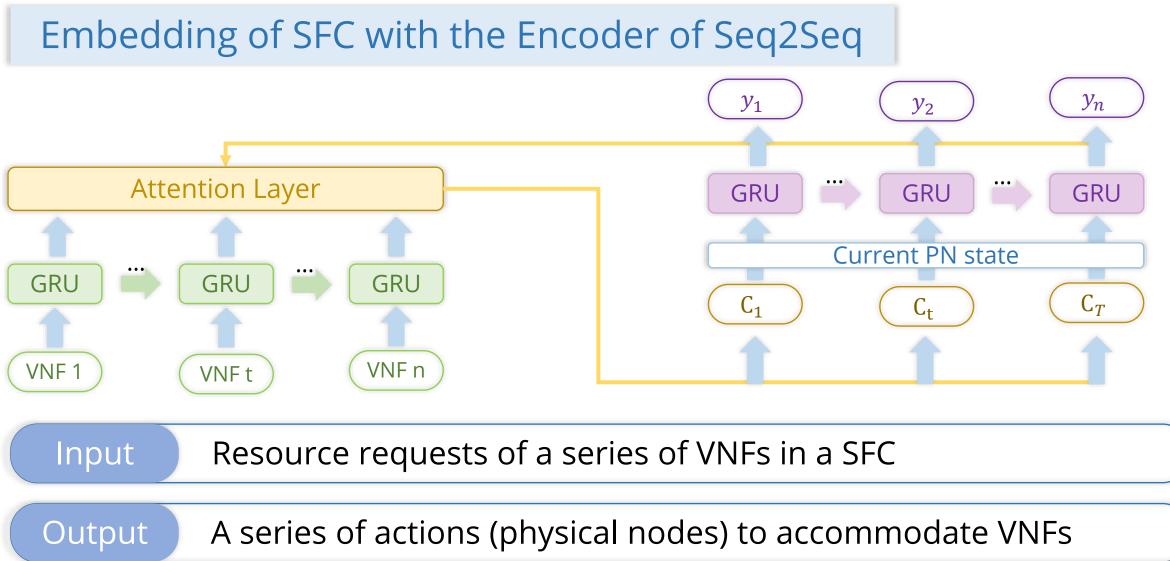




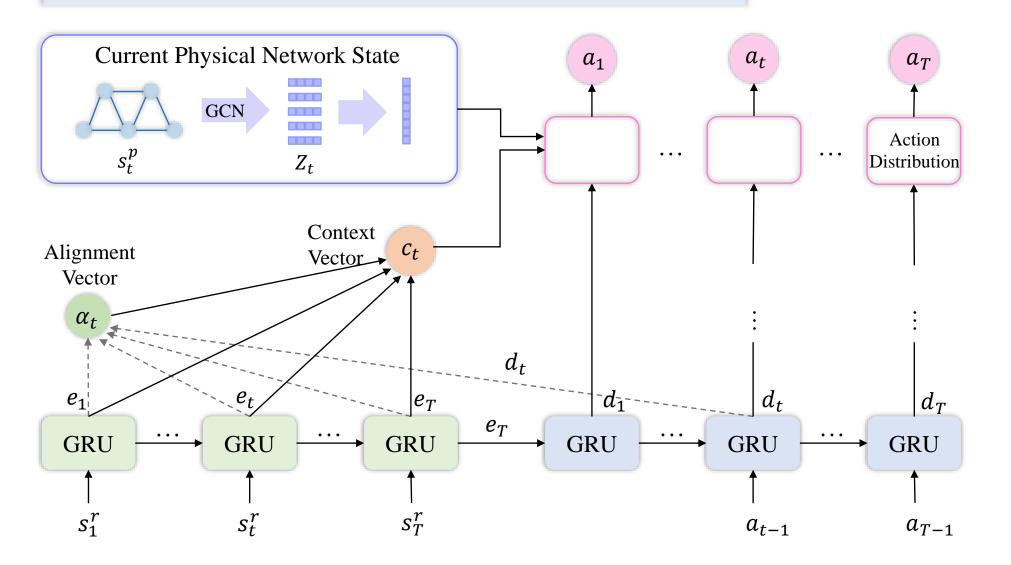


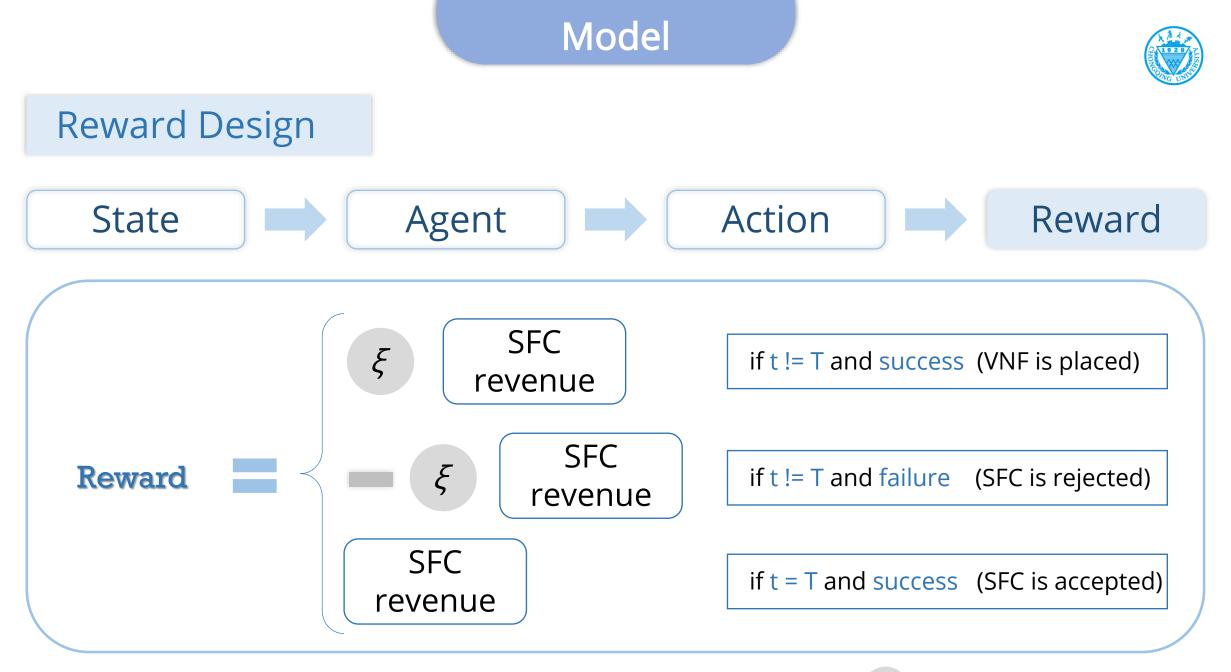
Embedding of Physical Network with GCN



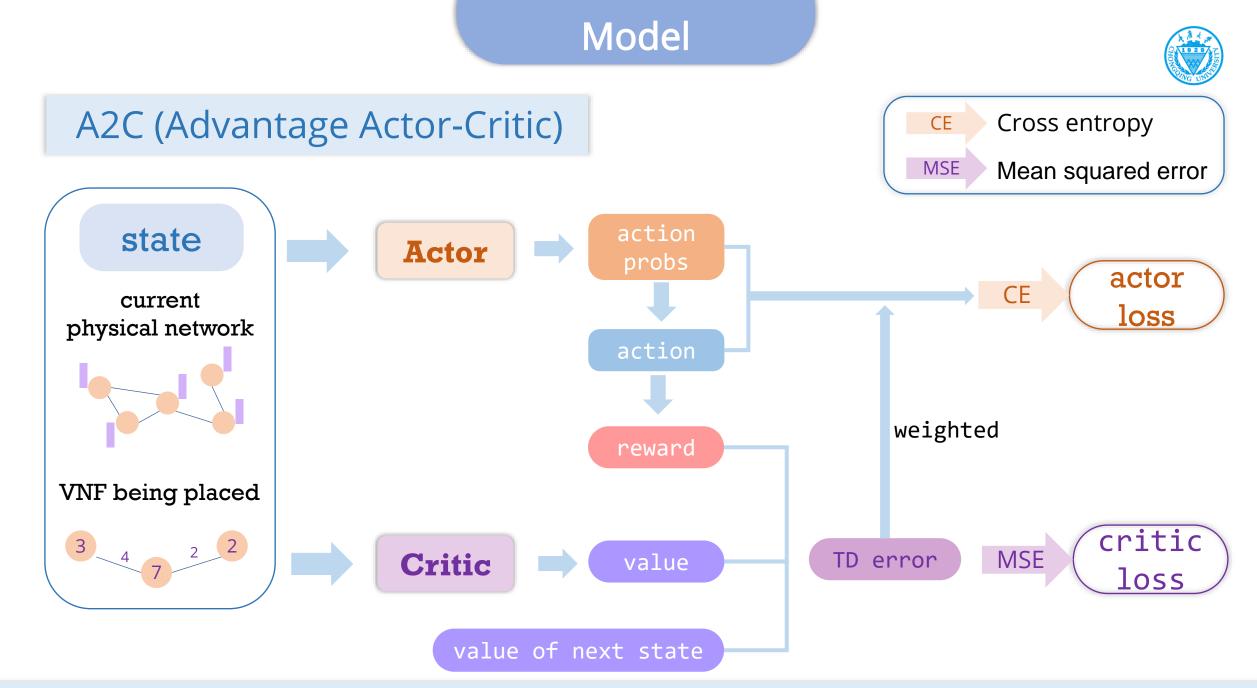


Policy generation

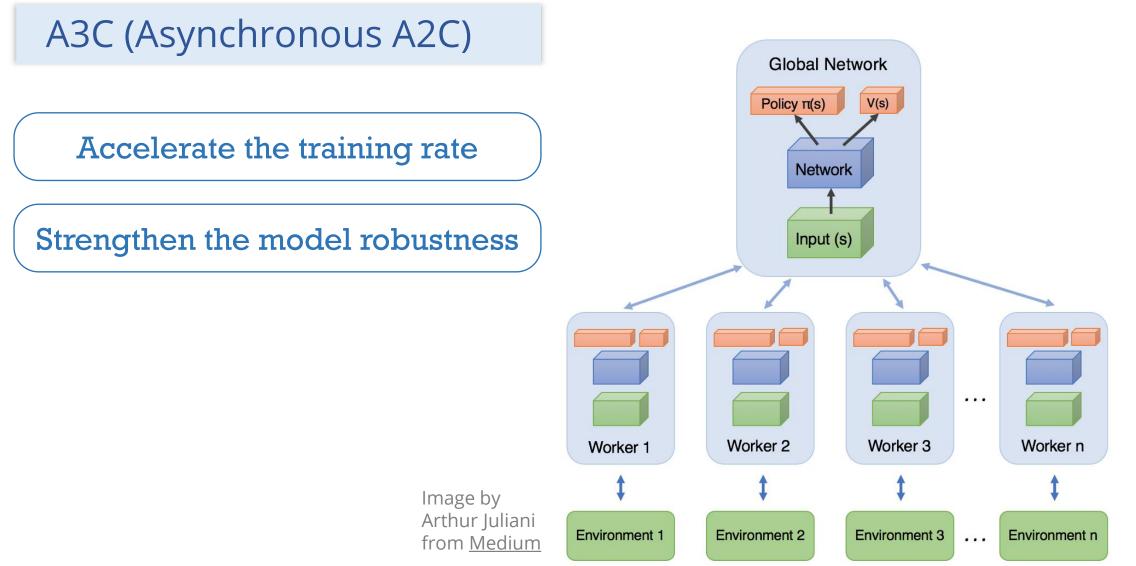




 ξ reward coefficient 16



Volodymyr Mnihet al. "Asynchronous Methods for Deep Reinforcement Learning". In ICML, 2016

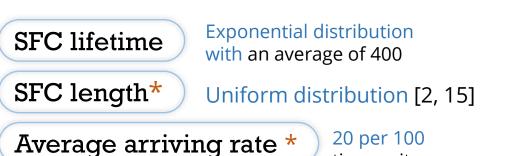


Volodymyr Mnihet al. "Asynchronous Methods for Deep Reinforcement Learning". In ICML, 2016

Experimental Setup

Model Parameters			
Name	Value	Description	
U	4	the number of actor networks	
μ_k	0.001	the unit price of resource k	
η	0.001	the unit price of bandwidth	
$\varepsilon_{ heta}$	0.00025	the learning rate of actor	
ε_{ω}	0.0005	the learning rate of critic	
γ	0.95	the discount factor of TD error	
ξ	0.125	the reward coefficient	
B	64	the batch size	
$\begin{bmatrix} U_{gcn}, & U_{emd}, \\ U_{enc}, & U_{dec} \end{bmatrix}$	64	the units number of GCN layer, embbeding layer, encoder hidden states and decoder hidden states	

Physical Network topology About 500 Nodes and 200 Links Resources Uniform distribution [50, 100] SFC Request



time units

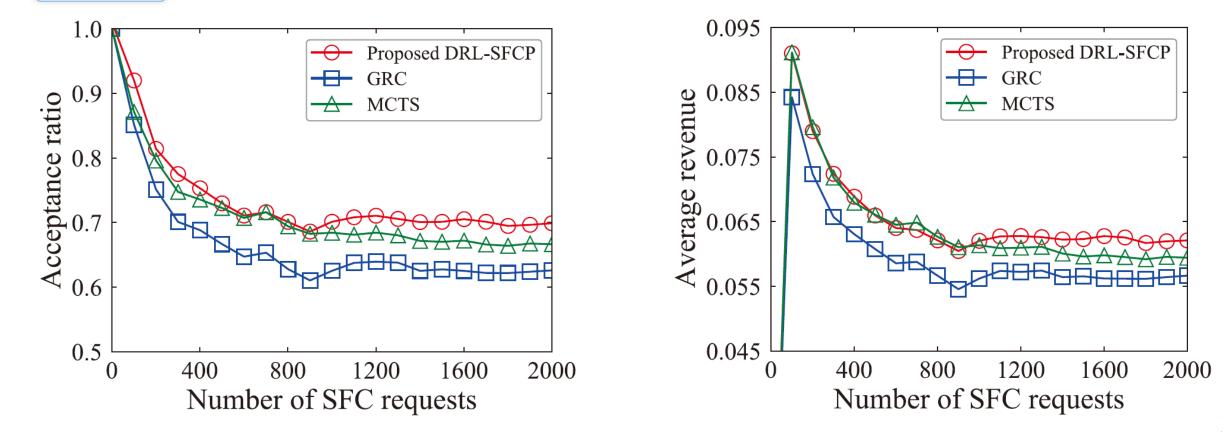
Compared
Algorithms• GRC based on global resource capacity(L. Gong et al. INFOCOM 2014)• MCTS using Monte Carlo tree search(S. Haeri et al. IEEE Trans Cybern 2018)

* means these settings may vary in the experiments for diverse evaluation

Acceptance Ratio & Average Revenue

Result DRL-SFCP achieves greater effect on two indicators

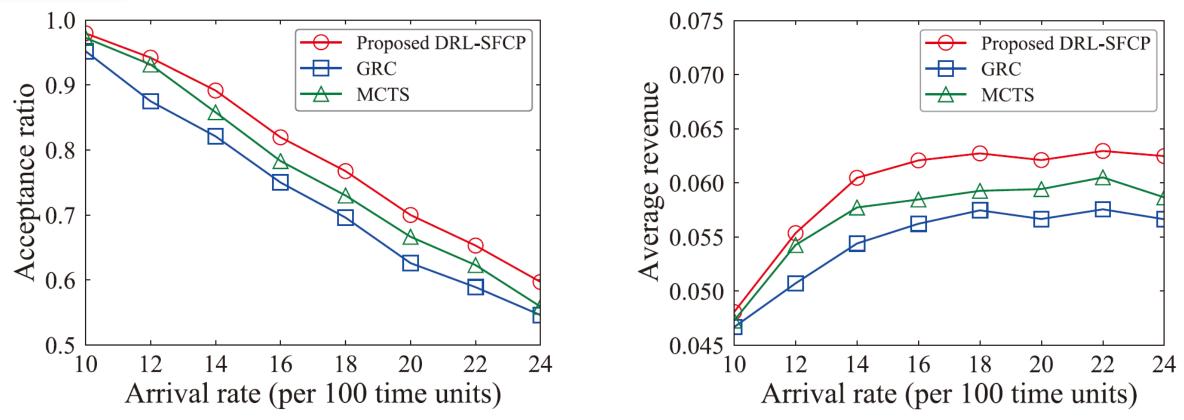
Ascribe the abundant information extracted from SFC and PN

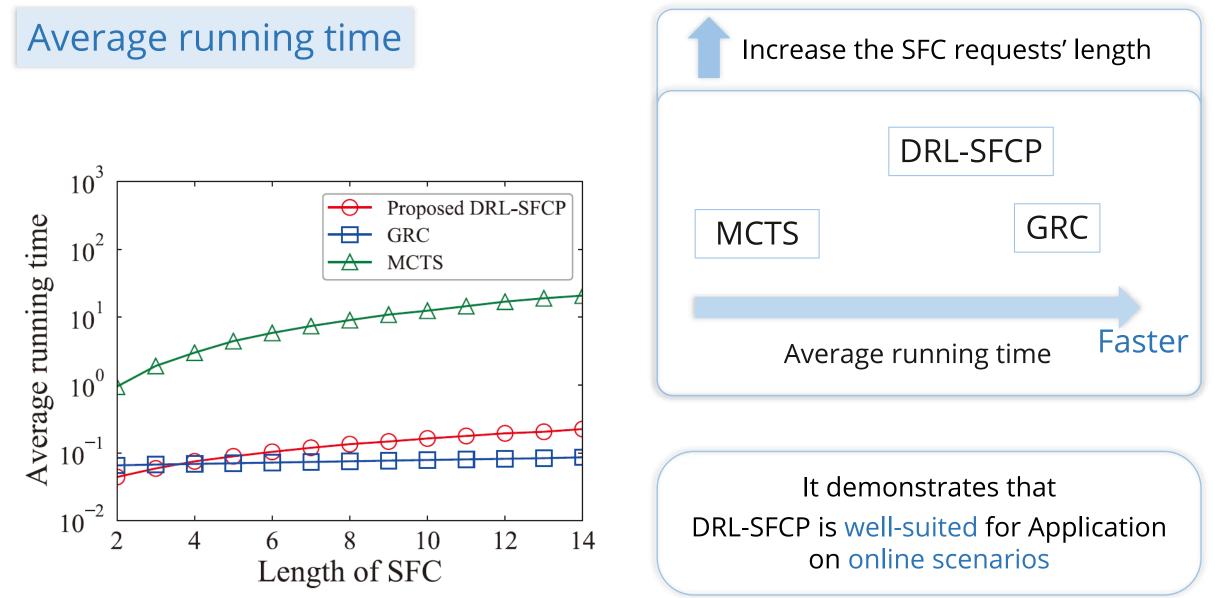


In various arrival rate conditions

Result The performance of DRL-SFCP outperforms GRC and MCTS

Ascribe the excellent abilities of fitting and generalization of DNN





Conclusion

Our contribution

- Guide online placement decision for SFC requests Adaptive DRL framework
- - **Effective NN architecture Extract** the sufficient information from input features
 - Parallel Training Method
- Enhance the training efficiency and model robustness

Future work

More powerful NN architectures

i.e. GNN, Transformer

More efficient DRL methods

i.e. Multi-agent

More realistic modeling scenarios

i.e. latency, multi-flow

IEEE International Conference on Communications 14-23 June 2021 // Virtual / Montreal

THANKSMtfly2018@gmail.com</>>github.com/GeminiLight/drl-sfcp

DRL-SFCP: Adaptive Service Function Chains Placement with Deep Reinforcement Learning

Tianfu Wang, Qilin Fan*, Xiuhua Li, Xu Zhang, Qingyu Xiong, Shu Fu and Min Gao