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Introduction
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Introduction

NFV Market BY REGION (USD, BILLON)

22.9%

the growing need for advanced network management systems
to handle the increasing network traffic and complexities.

*Image from MarketsandMarkets Research
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Introduction
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Introduction

Service Function Chain Request

Physical Network
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Introduction

Mathematical optimization-basedA

(Meta) Heuristic-basedB

Reinforcement learning-basedC

Existing Solutions 

Binary Integer Programming

Integer Linear Programming 

Integer Linear Programming

Node Rank based on degree

Global Resource Control

Constructive Particle Swarm

Require the prior knowledge of SFCs

Fall into the local optimum and static scene

Large search space & manually selected features Policy gradient-based

Q learning-based

Dynamic programming-based
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Formulation

System

A weighted undirected graph

A weighted  directed graph

Constraints

Maximize the  long-term average revenue

SFC request
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Single SFC
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Image by 
Lina Faik
from Medium

Model

Basic RL Agent
make placement decisions 
with Neural Network

Env.
Physical Network
Serialized SFC requests

State
Current situation of PN
Demand of underway SFC

Action
One of physical nodes to 
accommodate the VNF

Reward
Returned to award or punish 
the agent’s behavior

https://towardsdatascience.com/deep-q-network-combining-deep-reinforcement-learning-a5616bcfc207
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Embedding of Physical Network with GCN

𝑍 = 𝜎 ෩𝐷− Τ1 2 ሚ𝐴෩𝐷− Τ1 2𝑋𝑊

𝑮𝒓𝒂𝒑𝒉= 𝑮(𝑿,𝑨)
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Physical Network Node Representation
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A series of actions (physical nodes) to accommodate VNFs

Resource requests of a series of VNFs in a SFC

Ilya Sutskever et al. “Sequence to Sequence Learning with Neural Networks”. In NIPS, 2014 14

Model

Embedding of SFC with the Encoder of Seq2Seq

Input

Output

GRU GRU GRU

Attention Layer

VNF 1 VNF t VNF n

GRU GRU GRU

C1 Ct C𝑇

𝑦1 𝑦2 𝑦𝑛

… …

… …

Current PN state



GRU GRU GRU GRU GRU GRU

Current Physical Network State

…

𝑐𝑡

…

𝛼𝑡

GCN

Action

Distribution

𝑒1

𝑎1 𝑎𝑡 𝑎𝑇

… …

𝑎𝑡−1 𝑎𝑇−1

…
𝑠𝑡
𝑝

𝑑1

𝑠1
𝑟 𝑠𝑡

𝑟 𝑠𝑇
𝑟

𝑒𝑡 𝑒𝑇 𝑑𝑡 𝑑𝑇

𝑑𝑡

𝑒𝑇… …

…

Alignment

Vector

Context

Vector

𝑍𝑡

Model

Policy generation

15



Model

Reward
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Reward Design
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Volodymyr Mnihet al. “Asynchronous Methods for Deep Reinforcement Learning”. In ICML, 2016
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Volodymyr Mnihet al. “Asynchronous Methods for Deep Reinforcement Learning”. In ICML, 2016

Model

A3C (Asynchronous A2C)

Accelerate the training rate

Strengthen the model robustness
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Image by 
Arthur Juliani
from Medium

https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part-8-asynchronous-actor-critic-agents-a3c-c88f72a5e9f2
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Experiment

Experimental Setup Physical Network

SFC Request

Model Parameters
topology

Resources

SFC lifetime

SFC length*

Average arriving rate *

About 500 Nodes and 200 Links

Uniform distribution [50, 100]

Exponential distribution 
with an average of 400

Uniform distribution [2, 15]

20 per 100 
time units

* means these settings may vary in the experiments for diverse evaluation

Compared
Algorithms

• GRC based on global resource capacity                 (L. Gong et al. INFOCOM 2014)

• MCTS using Monte Carlo tree search       (S. Haeri et al. IEEE Trans Cybern 2018)
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Experiment

Acceptance Ratio & Average Revenue

Result DRL-SFCP achieves greater effect on two indicators

Ascribe the abundant information extracted from SFC and PN
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Experiment

Result The performance of DRL-SFCP outperforms GRC and MCTS

Ascribe the excellent abilities of fitting and generalization of DNN

In various arrival rate conditions
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Experiment

Increase the SFC requests’ lengthAverage running time

MCTS

Faster

GRC

DRL-SFCP

It demonstrates that 

DRL-SFCP is well-suited for Application 
on online scenarios

Average running time
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Conclusion

Future work

Adaptive DRL framework 

Effective NN architecture 

Parallel Training Method

Guide online placement decision for SFC requests

Extract the sufficient information from input features

Enhance the training efficiency and model robustness

More powerful 
NN architectures

i.e. GNN, Transformer

More efficient 
DRL methods

i.e. Multi-agent

More realistic 
modeling scenarios

i.e. latency, multi-flow

Our contribution
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