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Introduction
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Introduction

Network Function Virtualization
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Introduction

NEV Market BY REGION (USD, BILLON)
36.3
22.9%
12.9
B I
2017 2018 2019-e 2020 2021 2022 2023 2024-p CAGR
= North America = Europe = APAC  © Latin America = MEA Compound Annual

Growth Rate

Major Factors the growing nged for gdvanced network management systems
to handle the increasing network traffic and complexities.

*Image from MarketsandMarkets Research 5



Network NFV framework SEC
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Introduction

Existing Solutions

@ Mathematical optimization-based>

Require the prior knowledge of SFCs

@ (Meta) Heuristic-based >

Fall into the local optimum and static scene

@ Reinforcement learning-based >

Large search space & manually selected features

Integer Linear Programming

Binary Integer Programming

Integer Linear Programming

Global Resource Control

Node Rank based on degree
Constructive Particle Swarm

Q learning-based
Dynamic programming-based

Policy gradient-based




Formulation

System
Physical network A weighted undirected graph G'=(N',L"
SFC request A weighted directed graph G' = (N*, L")
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Basic RL

State

make placement decisions
[ Agent ]with Neural Network

Physical Network
[ Env. ] Serialized SFC requests

Reward
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Image by
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https://towardsdatascience.com/deep-q-network-combining-deep-reinforcement-learning-a5616bcfc207
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Agent (Neural Network Architecture)
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Embedding of Physical Network with GCN

(Graph = G(X,A)

X: Nodes Feature

A: Adjacency matrix
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Output

Node Representation

h' = {h'|, h'y, ..., Ky}, B'; € RF

A

Node Representation

Thomas N. Kipf et al. “Semi-Supervised Classification with Graph Convolutional Networks”. In ICLR, 2017
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Embedding of SFC with the Encoder of Seq2Seq
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llya Sutskever et al. “Sequence to Sequence Learning with Neural Networks”. In NIPS, 2014



Policy generation

Current Physical Network State
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Reward Design

[ State } [ Agent ] [ Action } Reward
4 : SFC N
¢ { } if t!=T and success (VNFis placed)
revenue
Reward = < - .f { re\fgrfue } if t I=T and failure (SFC is rejected)
{ SFC 1 if t =T and success (SFCis accepted)
revenue

_/

¢ reward coefficient .




A2C (Advantage Actor-Critic) ce Cross entropy
MSE  Mean squared error
//r <\\\ : action
state Betor
: actor
current CE < >
physical network loss

VNF being placed
Cg e | critie. Germor) wse (L)
value
k 7 / _» Y1llc _ loss
value of next state

Volodymyr Mnihet al. “Asynchronous Methods for Deep Reinforcement Learning”. In ICML, 2016
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A3C (Asynchronous A2C)

Global Network

\
\

C Accelerate the training rate )

CStrengthen the model robustness)
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Image by t
Arthur Juliani
from Medium

Volodymyr Mnihet al. “Asynchronous Methods for Deep Reinforcement Learning”. In ICML, 2016
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https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part-8-asynchronous-actor-critic-agents-a3c-c88f72a5e9f2

Experimental Setup

Physical Network

4 )
topology About 500 Nodes and 200 Links
Model Parameters | o
— Resources Uniform distribution [50, 100]
Name Value Description \_ Y,
U - the number of actor networks
Lk 0.001 the unit price of resource k
n 0.001 the unit price of bandwidth / SFC Req uest \
€0 0.00025 the learning rate of actor
9 0.95 the discount factor of TD error SFC lifetime with an average of 400
£ 0.125 the reward coefficient
B o he baich size SFC length® = Uniform distribution [2, 15]
[ [ the units number of GCN layer, o + O\ 20 per 100
T ermd> 64 embbeding layer, encoder hidden Average arriving rate o be
encs Udec . time units
states and decoder hidden states /
Compa red + GRC based on global resource capacity (L. Gong et al. INFOCOM 2014)
Algorith ms + MCTS using Monte Carlo tree search  (S. Haeri et al. IEEE Trans Cybern 2018)

* means these settings may vary in the experiments for diverse evaluation



Acceptance Ratio & Average Revenue

Result

DRL-SFCP achieves greater effect on two indicators

Ascribe the abundant information extracted from SFC and PN
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In various arrival rate conditions
Result = The performance of DRL-SFCP outperforms GRC and MCTS

Ascribe the excellent abilities of fitting and generalization of DNN
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Average running time

Average running time

- GRC
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Increase the SFC requests’ length

DRL-SFCP

MCTS GRC

Average running time Faster

It demonstrates that

DRL-SFCP is well-suited for Application
on online scenarios
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Our contribution

> Adaptive DRL framework
} Effective NN architecture

> Parallel Training Method

Future work

4 )
More powerful

NN architectures

i.e. GNN, Transformer

. >

Conclusion

Guide online placement decision for SFC requests

Extract the sufficient information from input features

Enhance the training efficiency and model robustness

4 - ) 4 )
More efficient More realistic
DRL methods modeling scenarios

i.e. Multi-agent i.e. latency, multi-flow

. > . >
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