A Survey on Deep Learning Advances for Time Series Forecasting

Content

Introduction

Introduction

Categories

Introduction

Applications

Implementation principle

- Support and can handle multivariate inputs
 - Capture complex nonlinear relationships

May not require a scaled or stationary time series as input

Classical

AR (Auto Regressive)

$$x_t = \phi_1 x_{t-1} + \phi_2 x_{t-2} + \dots + \phi_p x_{t-p} + u_t$$

MA (Moving Average)

$$x_t = u_t + \phi_1 u_{t-1} + \phi_2 u_{t-2} + \dots + \phi_3 u_{t-q}$$

ARMA (Auto Regressive and Moving Average)

 ϕ_i : Autoregressive coefficient u_t : White noise

Ø_i: Moving regression coefficient *u*_i: White noise

 $x_{t} = u_{t} + \phi_{1}u_{t-1} + \phi_{2}u_{t-2} + \dots + \phi_{q}u_{t-q} + \vartheta_{1}x_{t-1} + \vartheta_{2}x_{t-2} + \dots + \vartheta_{p}x_{t-p}$

AR: the relationship between current data and later dataMA: random perturbation (noise)

Basic Model

Aaron van den Oord et al. "WaveNet: A Generative Model for Raw Audio". arXiv, 2016

RNN RNN **Today** = yesterday's information + new knowledge Recurrent Neural Network (RNN) Long Short-Term Memory (LSTM) $\Rightarrow c^t = z^f \cdot \bigcirc c^{t-1} + z^i \odot z$ c_{t-1} A $h^t = z^o \odot tan h(c^t)$ Α h_{t-1} h_t → $y^t = \sigma(W'h^t)$ h_{t-1} (X_{t-1}) (x_t) $C_t = \alpha_t \cdot C_{t-1} + \beta_t \times \sigma(\theta_0 h_{t-1} + \theta_1 x_t)$ current state = forget gate × old stuff + input gate × new stuff $h_t = \sigma(\theta_0 h_{t-1} + \theta_1 x_t)$ $\mathbf{Z}_t = \sigma(\theta h_t)$ **Exponential Smoothing** $s_i = (1 - \alpha)s_{i-1} + \alpha x_i$

cell state: Change slowly

hidden state: Change faster

David Salinas et al. "DeepAR: Probabilistic Forecasting with Autoregressive Recurrent Networks". arXiv, 2017

Seq2Seq

Encoding Sequence

Decoding Sequence

Encoding Sequence

Attention

Long- and Short-term Time-series network (LSTNet)

RNN & RNN-Skip

CNN

Input

$$h_k = RELU(W_k * X + b_k)$$

Extract short-term patterns in the time dimension as well as local dependencies between variables

CNN & AR

Autoregressive

CNN & RNN <- Non-linear nature

FC & Sum

the scale of outputs is not sensitive to the scale of inputs

$$h_{t,i}^{L} = \sum_{k=0}^{q^{ar}-1} W_{k}^{ar} \boldsymbol{y}_{t-k,i} + b^{ar}$$

Final Prediction

$$T_t = h_t^D + h_t^L$$

18

Output

MLP aggregation

Recurrent Component h_t^R

Recurrent-skip Component

$$h_{t-p+1}^S, h_{t-p+2}^S, \dots, h_t^S$$

$$h_t^D = W^R h_t^R + \sum_{i=0}^{p-1} W_i^S h_{t-i}^S + b$$

period length is dynamic?

Recurrent Component h_t^R

Temporal Attention

$$H_t^R = [h_{t-q}^R, \dots, h_{t-1}^R]$$

$$\boldsymbol{\alpha}_{t} = AttnScore(H_{t}^{R}, h_{t-1}^{R})$$
$$\boldsymbol{c}_{t} = H_{t}\boldsymbol{\alpha}_{t}$$
$$h_{t}^{D} = W[\boldsymbol{c}_{t}; h_{t-1}^{R}] + b$$

23

Yen-Yu Chang et al. "A Memory-Network Based Solution for Multivariate Time-Series Forecasting". In AAAI, 2019 CCF-A

Yen-Yu Chang et al. "A Memory-Network Based Solution for Multivariate Time-Series Forecasting". In AAAI, 2019 CCF-A

27

TPA-LSTM

Shun-Yao Shih et al. "Temporal Pattern Attention for Multivariate Time Series Forecasting". In ECML PKDD, 2018 CCF-B

Transformer

A Vaswani et al. "Attention Is All You Need". In NeurIPS, 2017 CCF-A

Transformer

Enhancing the locality of Transformer

Canonical self-attention

Convolutional self-attention

Shiyang Li et al. "Enhancing the Locality and Breaking the Memory Bottleneck of Transformer on Time Series Forecasting". In *NeurIPS*, 2019 CCF-A

Transformer

Breaking the memory bottleneck of Transformer

Shiyang Li et al. "Enhancing the Locality and Breaking the Memory Bottleneck of Transformer on Time Series Forecasting". In *NeurIPS*, 2019 CCF-A

Boris N. Oreshkin et al. "N-BEATS: Neural basis expansion analysis for interpretable time series forecasting". In ICLR, 2020 CCF-A34

Informer

Haoyi Zhou et al. "Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting". In AAAI, 2021 CCF-A

Informer

Self-attention Distilling operation

 $\mathbf{X}_{j+1}^{t} = \operatorname{MaxPool}\left(\operatorname{ELU}(\operatorname{Conv1d}([\mathbf{X}_{j}^{t}]_{AB}))\right)$

Start token is efficiently applied in NLP's "dynamic decoding"

$$\begin{aligned} \mathbf{X}_{de} &= \{\mathbf{X}_{5d}, \mathbf{X}_{0}\} \\ \mathbf{X}_{5d} & \text{start token} \\ \mathbf{X}_{0} & \text{contains target sequence's time stamp,} \\ \text{i.e., the context at the target week} \end{aligned}$$

Informer

Generative-style decoder

 $\mathbf{X}_{j+1}^{t} = \operatorname{MaxPool}\left(\operatorname{ELU}(\operatorname{Conv1d}([\mathbf{X}_{j}^{t}]_{AB}))\right)$

MTGNN

Graph learning module spatial

extracts a sparse graph adjacency matrix adaptively based on data.

$X = \{S_{t_1}, S_{t_2}, ..., S_{t_P}\}$

Graph convolution module spatial address the spatial dependencies among variables

Temporal convolution module temporal capture temporal patterns by modified 1D convolutions

MTGNN

GC module

TC module

MTGNN

1. Sensor Embedding

Capture the unique characteristics of each sensor

$\mathbf{v_i} \in \mathbb{R}^d$, for $i \in \{1, 2, \cdots, N\}$

1) For structure learning

To determine which sensors are related to one another

2) In attention mechanism

To perform attention over neighbors in a way that allows heterogeneous effects for different types of sensors

2. Graph Structure Learning

learns a graph structure representing dependence relationships between sensors

1) candidate relations $\mathcal{C}_i \subseteq \{1, 2, \cdots, N\} \setminus \{i\}$

2) compute the similarity

$$e_{ji} = \frac{\mathbf{v}_i^{\top} \mathbf{v}_j}{\| \mathbf{v}_i \| \cdot \| \mathbf{v}_j \|} \text{ for } j \in \mathcal{C}_i$$

3) select edges

$$A_{ji} = 1\{j \in \text{Top K}(\{e_{ki}: k \in \mathcal{C}_i\})\}$$

Get Adjacency matrix A

3. Graph Attention-Based Forecasting

forecasts future values of each sensor

based on a graph attention function over its neighbors

3. Graph Attention-Based Forecasting

forecasts future values of each sensor

based on a graph attention function over its neighbors

3) Output

3. Graph Attention-Based Forecasting

forecasts future values of each sensor

based on a graph attention function over its neighbors

4. Graph Deviation Scoring

identifies deviations from the learned relationships, and localizes and explains these deviations.

Anomaly Detection

Summary

