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Introduction

Time Series

Given

Find

𝑿𝑿1,𝑿𝑿2, … ,𝑿𝑿𝑡𝑡

𝑿𝑿𝑡𝑡+Δ

High dimensionality 

Much noise

Insufficient or unavailable
𝒀𝒀𝑡𝑡+Δ

Characteristic

• Trend

• Seasonal

• Cyclical

• Irregular

Types of Trendsx𝒊𝒊,𝑡𝑡+Δ
x𝒊𝒊,𝑡𝑡+Δ, …, x𝒊𝒊,𝑡𝑡+Δ′
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Introduction

Categories

One-step Multi step

Forecasting step

Autoregressive Covariate

Inputting variables

Single point Probability

Outputting results

Univariate Multivariate

Forecasting target
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Introduction

Applications

Production Sales Traffic flowWeather forecastStock price

Statistical methods Machine learning

Statistical learning Deep learning

Implementation principle

Support and can handle  multivariate inputs

Capture complex nonlinear relationships

May not require a scaled or stationary time series as input
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AR (Auto Regressive)

MA (Moving Average)

ARMA (Auto Regressive and Moving Average)

𝑥𝑥𝑡𝑡 = ∅1𝑥𝑥𝑡𝑡−1 + ∅2𝑥𝑥𝑡𝑡−2 + ⋯+ ∅𝑝𝑝𝑥𝑥𝑡𝑡−𝑝𝑝 + 𝑢𝑢𝑡𝑡
∅𝑖𝑖: Autoregressive coefficient
𝑢𝑢𝑡𝑡: White noise

𝑥𝑥𝑡𝑡 = 𝑢𝑢𝑡𝑡 + ∅1𝑢𝑢𝑡𝑡−1 + ∅2𝑢𝑢𝑡𝑡−2 + ⋯+ ∅3𝑢𝑢𝑡𝑡−𝑞𝑞
∅𝑖𝑖: Moving regression coefficient
𝑢𝑢𝑖𝑖: White noise

𝑥𝑥𝑡𝑡 = 𝑢𝑢𝑡𝑡 + ∅1𝑢𝑢𝑡𝑡−1 + ∅2𝑢𝑢𝑡𝑡−2 + ⋯+ ∅𝑞𝑞𝑢𝑢𝑡𝑡−𝑞𝑞 + 𝜗𝜗1𝑥𝑥𝑡𝑡−1 + 𝜗𝜗2𝑥𝑥𝑡𝑡−2 + ⋯+ 𝜗𝜗𝑝𝑝𝑥𝑥𝑡𝑡−𝑝𝑝

AR：the relationship between current data and later data
MA： random perturbation (noise)

Classical



Basic Model
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Canonical Seq2Seq

Many-to-Many
One-to-One 𝑓𝑓𝑡𝑡: 𝑥𝑥𝑡𝑡 ↦ 𝑧𝑧𝑡𝑡 𝑓𝑓: 𝑧𝑧1,⋯ , 𝑧𝑧𝑇𝑇𝑒𝑒 ↦ 𝑧𝑧𝑇𝑇𝑒𝑒+1,⋯ , 𝑧𝑧𝑇𝑇𝑒𝑒+𝑇𝑇𝑑𝑑



MLP
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MLP Sequential relationship？



Aaron van den Oord et al. “WaveNet: A Generative Model for Raw Audio”. arXiv, 2016

MLP
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CNN Long-Term Sequential relationship？

Yet there has been a lack of empirical evidence showing that this type of models can actually capture 
the temporal dependencies by discovering the latent hierarchical structure of the sequence

Image 
from blog
by DeepMind

https://deepmind.com/blog/article/wavenet-generative-model-raw-audio
https://deepmind.com/


RNN
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RNN Today = yesterday’s information + new knowledge

Long Short-Term Memory (LSTM)Recurrent Neural Network (RNN)

current state = forget gate × old stuff + input gate × new stuff

cell state: Change slowlyhidden state: Change faster

Exponential Smoothing 𝑠𝑠𝑖𝑖 = 1 − 𝛼𝛼 𝑠𝑠𝑖𝑖−1 + 𝛼𝛼𝑥𝑥𝑖𝑖
ℎ𝑡𝑡 = 𝜎𝜎 𝜃𝜃0ℎ𝑡𝑡−1 + 𝜃𝜃1𝑥𝑥𝑡𝑡
𝑧𝑧𝑡𝑡 = 𝜎𝜎 𝜃𝜃ℎ𝑡𝑡

𝑐𝑐𝑡𝑡 = 𝑧𝑧𝑓𝑓 ⋅⊙ 𝒄𝒄𝒕𝒕−𝟏𝟏 + 𝑧𝑧𝑖𝑖 ⊙ 𝒛𝒛
ℎ𝑡𝑡 = 𝑧𝑧𝑜𝑜 ⊙ 𝑡𝑡𝑡𝑡𝑡𝑡 ℎ 𝑐𝑐𝑡𝑡

𝑦𝑦𝑡𝑡 = 𝜎𝜎 𝑊𝑊′ℎ𝑡𝑡

𝐶𝐶𝑡𝑡 = 𝛼𝛼𝑡𝑡 ⋅ 𝐶𝐶𝑡𝑡−1 + 𝛽𝛽𝑡𝑡 × 𝜎𝜎 𝜃𝜃0ℎ𝑡𝑡−1 + 𝜃𝜃1𝑥𝑥𝑡𝑡



David Salinas et al. “DeepAR: Probabilistic Forecasting with Autoregressive Recurrent Networks”. arXiv, 2017

DeepAR
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ℎ𝑡𝑡−1
𝑥𝑥𝑡𝑡
𝑧𝑧𝑡𝑡−1

Previous state

Current features

Last observed value

Similar to Autoregressive Input



David Salinas et al. “DeepAR: Probabilistic Forecasting with Autoregressive Recurrent Networks”. arXiv, 2017

DeepAR
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Seq2Seq
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𝑓𝑓encoder : 𝑧𝑧1,⋯ , 𝑧𝑧𝑇𝑇𝑒𝑒 ↦ 𝒉𝒉𝑇𝑇𝑒𝑒 𝑓𝑓decoder : 𝒉𝒉𝑇𝑇𝑒𝑒 ↦ 𝑧𝑧𝑇𝑇𝑒𝑒+1,⋯ , 𝑧𝑧𝑇𝑇𝑒𝑒+𝑇𝑇𝑑𝑑

Encoder Decoder



Seq2Seq
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RNN-RNN



Seq2Seq
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CNN-RNN



Attention
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Guokun Lai et al. “Modeling Long- and Short-Term Temporal Patterns with Deep Neural Networks”. In SIGIR, 2018 CCF-A

LSTNet
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Long- and Short-term Time-series network (LSTNet)

Input CNN & AR RNN & RNN-Skip FC & Sum Output

Focus on local scaling

Non-linear

Linear

Neural Network

Autoregressive

Recurring patterns



Guokun Lai et al. “Modeling Long- and Short-Term Temporal Patterns with Deep Neural Networks”. In SIGIR, 2018 CCF-A

LSTNet
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Input CNN & AR RNN & RNN-Skip FC & Sum Output

Extract short-term patterns in the time dimension
as well as local dependencies between variables

CNN Autoregressive

CNN & RNN <- Non-linear nature
the scale of outputs is not sensitive to the 
scale of inputs

Final Prediction

ℎ𝑡𝑡,𝑖𝑖
𝐿𝐿 = �

𝑘𝑘=0

𝑞𝑞𝑎𝑎𝑎𝑎−1

𝑊𝑊𝑘𝑘
𝑎𝑎𝑎𝑎𝒚𝒚𝑡𝑡−𝑘𝑘,𝑖𝑖 + 𝑏𝑏𝑎𝑎𝑎𝑎



Guokun Lai et al. “Modeling Long- and Short-Term Temporal Patterns with Deep Neural Networks”. In SIGIR, 2018 CCF-A

LSTNet
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Gated Recurrent Unit (GRU)

Recurrent-skip ComponentRecurrent Component

GRU and LSTM usually fail to capture very 
long-term correlation in practice

Input CNN & AR RNN & RNN-Skip FC & Sum Output

period



Guokun Lai et al. “Modeling Long- and Short-Term Temporal Patterns with Deep Neural Networks”. In SIGIR, 2018 CCF-A

LSTNet
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Recurrent-skip Component

Recurrent Component

Input CNN & AR RNN & RNN-Skip FC & Sum Output

MLP aggregation



Guokun Lai et al. “Modeling Long- and Short-Term Temporal Patterns with Deep Neural Networks”. In SIGIR, 2018 CCF-A

LSTNet
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Recurrent Component

Input CNN & AR RNN & RNN-Skip FC & Sum Output

Temporal Attention

period length is dynamic？



Guokun Lai et al. “Modeling Long- and Short-Term Temporal Patterns with Deep Neural Networks”. In SIGIR, 2018 CCF-A

LSTNet
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Long- and Short-term Time-series network (LSTNet)

Input CNN & AR RNN & RNN-Skip FC & Sum Output

Focus on local scaling

Non-linear

Linear

Neural Network

Autoregressive

Recurring patterns

Final Prediction



Yen-Yu Chang et al. “A Memory-Network Based Solution for Multivariate Time-Series Forecasting”. In AAAI, 2019 CCF-A

MTNet
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Memory Time-series Network (MTNet)



Yen-Yu Chang et al. “A Memory-Network Based Solution for Multivariate Time-Series Forecasting”. In AAAI, 2019 CCF-A

MTNet
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Memory Time-series Network (MTNet)

Encoder

a set of long-term time series

a short-term historical time series



Yen-Yu Chang et al. “A Memory-Network Based Solution for Multivariate Time-Series Forecasting”. In AAAI, 2019 CCF-A

MTNet
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Memory Time-series Network (MTNet)

Encoder

Q

X



Yen-Yu Chang et al. “A Memory-Network Based Solution for Multivariate Time-Series Forecasting”. In AAAI, 2019 CCF-A

MTNet
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Memory Time-series Network (MTNet)

Attention



Yen-Yu Chang et al. “A Memory-Network Based Solution for Multivariate Time-Series Forecasting”. In AAAI, 2019 CCF-A

MTNet
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Memory Time-series Network (MTNet)

Attention



Yen-Yu Chang et al. “A Memory-Network Based Solution for Multivariate Time-Series Forecasting”. In AAAI, 2019 CCF-A

MTNet
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Memory Time-series Network (MTNet)

Aggregation



Yen-Yu Chang et al. “A Memory-Network Based Solution for Multivariate Time-Series Forecasting”. In AAAI, 2019 CCF-A

MTNet
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Memory Time-series Network (MTNet)

Autoregressive



Shun-Yao Shih et al. “Temporal Pattern Attention for Multivariate Time Series Forecasting”. In ECML PKDD, 2018 CCF-B

TPA-LSTM
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Attention
Time steps Inputting Variables

Temporal Pattern Attention

LSTM

MLP

y



A Vaswani et al. “Attention Is All You Need”. In NeurIPS, 2017 CCF-A 31

Transformer

Image from Blog by Jalammar

https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/


Shiyang Li et al. “Enhancing the Locality and Breaking the Memory Bottleneck of Transformer on Time Series Forecasting”. In 
NeurIPS, 2019 CCF-A 32

Transformer

Convolutional self-attentionCanonical self-attention

Enhancing the locality of Transformer



Shiyang Li et al. “Enhancing the Locality and Breaking the Memory Bottleneck of Transformer on Time Series Forecasting”. In 
NeurIPS, 2019 CCF-A 33

Transformer

Breaking the memory bottleneck of Transformer



Boris N. Oreshkin et al. “N-BEATS: Neural basis expansion analysis for interpretable time series forecasting”. In ICLR, 2020 CCF-A34

N-BEATS



Haoyi Zhou et al. “Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting”. In AAAI, 2021 CCF-A 35

Informer



Haoyi Zhou et al. “Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting”. In AAAI, 2021 CCF-A 36

Informer

Self-attention Distilling operation

Start token is efficiently applied in NLP’s “dynamic decoding”

contains target sequence’s time stamp, 
i.e., the context at the target week

start token



Haoyi Zhou et al. “Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting”. In AAAI, 2021 CCF-A 37

Informer

Generative-style decoder



Zonghan Wu et al. “Connecting the Dots: Multivariate Time Series Forecasting with Graph Neural Networks”. In KDD, 2020 CCF-A

MTGNN
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Graph learning module 
extracts a sparse graph adjacency matrix adaptively based on data.

Graph convolution module 
address the spatial dependencies among variables

Temporal convolution module
capture temporal patterns by modified 1D convolutions

spatial

temporal

spatial



Zonghan Wu et al. “Connecting the Dots: Multivariate Time Series Forecasting with Graph Neural Networks”. In KDD, 2020 CCF-A

MTGNN
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Zonghan Wu et al. “Connecting the Dots: Multivariate Time Series Forecasting with Graph Neural Networks”. In KDD, 2020 CCF-A

MTGNN
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GC module



Zonghan Wu et al. “Connecting the Dots: Multivariate Time Series Forecasting with Graph Neural Networks”. In KDD, 2020 CCF-A

MTGNN
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TC module



Zonghan Wu et al. “Connecting the Dots: Multivariate Time Series Forecasting with Graph Neural Networks”. In KDD, 2020 CCF-A

MTGNN

42



Hang Zhao et al. “Multivariate Time-series Anomaly Detection via Graph Attention Network”. In ICDM, 2020 CCF-B

MTAD-GAT

43



Ailin Deng et al. “Graph Neural Network-Based Anomaly Detection in Multivariate Time Series”. In AAAI, 2021 CCF-A

GDN

44



Ailin Deng et al. “Graph Neural Network-Based Anomaly Detection in Multivariate Time Series”. In AAAI, 2021 CCF-A

GDN
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Capture the unique characteristics of each sensor

1. Sensor Embedding

1) For structure learning

To determine which sensors are related 
to one another

2) In attention mechanism

To perform attention over neighbors in a 
way that allows heterogeneous effects for 
different types of sensors

USE

}𝐯𝐯𝐢𝐢 ∈ ℝ𝑑𝑑 , for 𝑖𝑖 ∈ {1,2,⋅ ⋯ ,𝑁𝑁



Directed
graph

Ailin Deng et al. “Graph Neural Network-Based Anomaly Detection in Multivariate Time Series”. In AAAI, 2021 CCF-A

GDN
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learns a graph structure representing 
dependence relationships between sensors

2. Graph Structure Learning

For each sensor 𝑖𝑖

1) candidate relations
}𝒞𝒞𝑖𝑖 ⊆ {1,2,⋯ ,𝑁𝑁} ∖ {𝑖𝑖

𝑒𝑒𝑗𝑗𝑗𝑗 =
𝐯𝐯𝐢𝐢⊤𝐯𝐯𝐣𝐣

∥ 𝐯𝐯𝐢𝐢 ∥ ⋅ ∥ 𝐯𝐯𝐣𝐣 ∥
for 𝑗𝑗 ∈ 𝒞𝒞𝑖𝑖

2) compute the similarity

𝐴𝐴𝑗𝑗𝑗𝑗 = 1 𝑗𝑗 ∈ Top K 𝑒𝑒𝑘𝑘𝑘𝑘: 𝑘𝑘 ∈ 𝒞𝒞𝑖𝑖

3) select edges

Get Adjacency matrix A

nodes

edges sensors

dependency relationships



1) Input

Ailin Deng et al. “Graph Neural Network-Based Anomaly Detection in Multivariate Time Series”. In AAAI, 2021 CCF-A

GDN
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forecasts future values of each sensor 
based on a graph attention function over its neighbors

3. Graph Attention-Based Forecasting

2) Feature Extractor 3) Output

a sliding window of size 𝑤𝑤
over the historical time series data

x 𝑡𝑡 : = s t−w , s t−w+1 ,⋯ , s t−1

sensor data at the current time tick，i.e. s t−w

target output



1) Input

Ailin Deng et al. “Graph Neural Network-Based Anomaly Detection in Multivariate Time Series”. In AAAI, 2021 CCF-A

GDN
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forecasts future values of each sensor 
based on a graph attention function over its neighbors

3. Graph Attention-Based Forecasting

2) Feature Extractor 3) Output

𝐳𝐳𝑖𝑖
𝑡𝑡 = Re L𝑈𝑈 𝛼𝛼𝑖𝑖,𝑖𝑖𝐖𝐖𝐱𝐱𝑖𝑖

𝑡𝑡 + �
)𝑗𝑗∈𝒩𝒩(𝑖𝑖

𝛼𝛼𝑖𝑖,𝑗𝑗𝐖𝐖𝐱𝐱𝑗𝑗
𝑡𝑡

𝐠𝐠𝑖𝑖
𝑡𝑡 = 𝐯𝐯𝑖𝑖 ⊕𝑊𝑊𝐱𝐱𝑖𝑖

𝑡𝑡

𝜋𝜋(𝑖𝑖, 𝑗𝑗) = LeakyReLU 𝐚𝐚⊤ 𝐠𝐠𝑖𝑖
𝑡𝑡 ⊕ 𝐠𝐠𝑗𝑗

𝑡𝑡

𝛼𝛼𝑖𝑖,𝑗𝑗 =
)ex p(𝜋𝜋(𝑖𝑖, 𝑗𝑗)

�∑ }𝑘𝑘∈𝒩𝒩(𝑖𝑖)∪{𝑖𝑖 ex p(𝜋𝜋(𝑖𝑖, 𝑘𝑘)

compute

attention

coefficients

Aggregated representation 𝐳𝐳𝑖𝑖



1) Input

Ailin Deng et al. “Graph Neural Network-Based Anomaly Detection in Multivariate Time Series”. In AAAI, 2021 CCF-A

GDN
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forecasts future values of each sensor 
based on a graph attention function over its neighbors

3. Graph Attention-Based Forecasting

2) Feature Extractor 3) Output

𝐳𝐳1
𝑡𝑡 ,⋯ , 𝐳𝐳𝑁𝑁

𝑡𝑡Representations of 𝑁𝑁 nodes 

�𝐬𝐬 𝐭𝐭 = 𝑓𝑓𝜃𝜃 𝐯𝐯1 ∘ 𝐳𝐳1
𝑡𝑡 ,⋯ , 𝐯𝐯𝑁𝑁 ∘ 𝐳𝐳𝑁𝑁

𝑡𝑡

output dimensionality 𝑁𝑁

Target output

Mean Squared Error
𝐿𝐿MSE =

1
𝑇𝑇train − 𝑤𝑤

�
𝑡𝑡=𝑤𝑤+1

𝑇𝑇train
∥ �𝐬𝐬 𝐭𝐭 − 𝐬𝐬 𝐭𝐭 ∥2

2



Ailin Deng et al. “Graph Neural Network-Based Anomaly Detection in Multivariate Time Series”. In AAAI, 2021 CCF-A

GDN
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identifies deviations from the learned relationships, 
and localizes and explains these deviations.

4. Graph Deviation Scoring

1) Computing an error value

Anomaly Detection

Err𝑖𝑖( 𝑡𝑡) = 𝐬𝐬𝐢𝐢
𝐭𝐭 − �𝐬𝐬𝐢𝐢

𝐭𝐭

2) Perform a robust normalization

𝑎𝑎𝑖𝑖(𝑡𝑡) =
Err𝑖𝑖( 𝑡𝑡) − �𝜇𝜇𝑖𝑖

�𝜎𝜎𝑖𝑖
3) Aggregate over sensors

A(𝑡𝑡) = 𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖
𝑎𝑎𝑖𝑖(𝑡𝑡)

4) Generate the smoothed scores

𝐴𝐴𝑠𝑠 𝑡𝑡 = SMA(A(𝑡𝑡))

5) labelled as an anomaly

If 𝐴𝐴𝑠𝑠 𝑡𝑡 > THRESHOLD

𝑡𝑡 time
𝑖𝑖 sensor

�𝜇𝜇𝑖𝑖 median
�𝜎𝜎𝑖𝑖 IQR2

max
function



Ailin Deng et al. “Graph Neural Network-Based Anomaly Detection in Multivariate Time Series”. In AAAI, 2021 CCF-A

GDN

51



52

Summary

DL for TS

CONV PoolingCNN

Seq2Seq Attention

Transformer
GCN GAT

GNN
GAN DRL

Other…

A Survey on Deep Learning Advances 
for  Time Series Forecasting

LSTM GRURNN

Thanks

@GeminiLight

mailto:wtfly2018@163.com
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