
DRL-SFCP: Adaptive Service Function Chains
Placement with Deep Reinforcement Learning

Tianfu Wang1,2, Qilin Fan1,2,∗, Xiuhua Li1,2, Xu Zhang3, Qingyu Xiong1,2, Shu Fu1,4 and Min Gao1,2

1Key Laboratory of Dependable Service Computing in Cyber-Physical-Society, Ministry of Education, China
2School of Big Data & Software Engineering, Chongqing University, Chongqing, China

3 School of Electronic Science and Engineering, Nanjing University, Jiangsu, China
4 College of Microelectronics and Communication Engineering, Chongqing University, Chongqing, China

∗Corresponding author: Qilin Fan (fanqilin@cqu.edu.cn)

Email:1,2{wangtianfu,fanqilin,xiong03,gaomin}@cqu.edu.cn, lixiuhua1988@gmail.com,
3xzhang17@nju.edu.cn, 4shufu@cqu.edu.cn

Abstract—Network function virtualization (NFV) is a promis-
ing paradigm that network functions can be deployed on com-
modity servers instead of dedicated servers to enhance the
resource utilization and reduce the management difficulty. Based
on the NFV technology, a complex network service can be
composed of a series of ordered virtual network functions, known
as service function chain (SFC). In this context, how to efficiently
place SFCs in acceptable running time to improve resource
utilization and service quality while meeting the constraints of the
physical network is a critical issue for infrastructure providers.
In this paper, we propose a deep reinforcement learning-based
approach called DRL-SFCP for adaptive SFC placement. DRL-
SFCP maximizes the long-term average revenue by combining
both the graph convolution network which extracts the features
of the physical network and sequence-to-sequence model which
captures the ordered information of the SFC request to gen-
erate placement strategies. It learns to make SFC placement
decisions via observations of the corresponding performance of
past decisions rather than a hypothetical environment. Extensive
experimental results show that our DRL-SFCP can achieve 11.6%
and 9.6% improvement in terms of the acceptance ratio and the
long-term average revenue, compared with existing benchmarks.

I. INTRODUCTION

Network function virtualization (NFV) is a promising

paradigm that network functions are executed with the assis-

tance of software middle-boxes that run on top of commodity

services rather than traditional dedicated servers. NFV has

received extensive attention from academia and industry for

its superior ability to enhance resource utilization and reduce

management difficulty. Benefiting from NFV technology, a

complex network service (NS) [1] can be composed of a series

of ordered virtual network functions (VNFs) [2], known as

service function chain (SFC). In an online scenario, continuous

SFC requests are attempted to be placed in the underlying

network under various resource constraints [3]. It is an issue

actively followed by infrastructure providers (InPs) that place

SFC requests as efficiently as possible to improve resource

utilization and quality of service (QoS).
To solve the SFC placement problem, various approaches

have been proposed. We divide them into three areas: i)

Mathematical optimization-based. The authors in [4] jointly

considered the placement of VNFs and flow distribution of

SFCs and proposed a polynomial time algorithm based on lin-

ear relaxation and rounding. The authors in [5] modeled SFC

placement as a set cover problem to minimize the setup cost

and proposed two algorithms with a logarithmic approximation

factor. However, due to the dependence of prior knowledge

of SFCs and the high computational complexity, these offline

approaches are difficult to apply to online placement scenarios;

ii) Heuristic-based. The authors in [6] aimed to maximize the

revenue-to-cost ratio based on the metric of global resource

capacity. A dynamic programming-based algorithm was de-

signed in [7] to minimize the resources cost. Nevertheless,

these algorithms lack adaptability to various environments and

might fall into local optimum; iii) Reinforcement learning

(RL)-based. The authors in [8] formulated the problem as

Markov decision process (MDP) and used the Monte Carlo

tree search algorithm to maximize the revenue-to-cost and

acceptance ratio. The authors in [9] utilized a policy gradient

approach with Lagrange relaxation technique to minimize the

overall power consumption. However, these approaches only

consider the single resource in the physical server and assume

the grid-like or start-like topology for the physical network.

In this paper, we propose a DRL-based approach called

DRL-SFCP for adaptive SFC placement. DRL-SFCP max-

imizes the long-term average revenue by combining both

the graph convolution network (GCN) which extracts the

features of the physical network and sequence-to-sequence

(Seq2Seq) model which captures the ordered information of

the SFC request to generate placement strategies. It learns

to make SFC placement decisions via observations of the

corresponding performance of past decisions rather than a

hypothetical environment. The main contributions of this paper

are summarized as follows:

• We investigate the use of DRL to guide online placement

decisions for SFC requests. To this end, we formulate the

problem as a MDP, in which the optimal solution can be

considered as a sequence of decisions.

• We design a novel DRL-SFCP approach which uti-

lizes deep neural networks (DNNs) to explore the non-

Euclidean structural characteristics of the physical net-

Fig. 1. An example of SFC placement.

work and the ordered information of the SFC request.

Furthermore, we employ asynchronous advantage actor-

critic (A3C), which maintains a policy and an estimate

of the value function to train the DNN of DRL-SFCP in

parallel.

• Experimental results show that compared with existing

approaches, the proposed DRL-SFCP can improve the

acceptance ratio and the long-term average revenue with

low running time.

The rest of the paper is organized as follows. In Section

II, we provide the system model and formal definition of the

problem. The details of DRL-SFCP approach are presented

in Section III. Section IV presents the experimental results.

Finally, we conclude our work in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we present the physical network model

and the SFC request model. Besides, we provide the formal

definition of SFC placement problem.

A. Physical Network

The physical network can be modeled as a weighted undi-

rected graph G′ = (N ′, L′), where N ′ denotes the set of nodes

and L′ represents the set of links in the physical/substrate

network. The set of node resources (e.g., central processing

units (CPUs), random access memory (RAM), storage, etc.)

provided by the physical network is denoted as K. The vector

of remaining and maximum resources of physical node n′ ∈
N ′ are denoted as Rr

n′ =
[
Rr

n′,1, . . . , R
r
n′,k, . . . , R

r
n′,|K|

]
and

Rm
n′ =

[
Rm

n′,1, . . . , R
m
n′,k, . . . , R

m
n′,|K|

]
respectively, where

Rr
n′,k and Rm

n′,k are the remaining and maximum amount of

resources k ∈ K provided by n′. The link-oriented attribute

could be bandwidth, latency, packet loss, etc. Without loss

of generality, we only take bandwidth as the link attribute in

physical network in this paper. The remaining and maximum

bandwidth of physical link l′ ∈ L′ are denoted as Br
l′ and Bm

l′ .

B. SFC Requests
Each SFC request i can be modeled as a weighted directed

graph Gi = (N i, Li), where N i denotes the set of VNFs

and Li refers to the virtual links. ti is the arrival time of i.
We denote rni = [rni,1, . . . , rni,k, . . . , rni,|K|] as the vector

of requested resources of VNF ni ∈ N i, where rni,k is the

amount of resource k ∈ K requested by VNF ni. bli represents

the bandwidth demand of the virtual link li ∈ Li.

C. Problem Formulation
Fig. 1 gives an example of SFC deployment. It tries to map

an arriving SFC Gi to the physical network G′ under the

constraints of resources. We introduce two binary variables

φni

n′ , φli

l′ to denote the placement of VNFs and virtual links to

the nodes and links in the physical network, respectively. φni

n′

(φli

l′) is 1 if ni (li) is mapped at the physical node (link) n′

(l′), and 0 otherwise. The problem is subject to the following

constraints:

• The total amount of required resource k of SFC request

i mapped on n′ should not exceed its remaining amount

of resources. We have:∑
ni

φni

n′ rni,k ≤ Rr
n′,k, ∀n′ ∈ N ′, ∀k ∈ K. (1)

• The total bandwidth of SFC request i mapped on l′ should

not exceed its remaining bandwidth. We have:∑
li

φli

l′ bli ≤ Br
l′ , ∀l′ ∈ L′. (2)

• Each VNF ni can only be placed on one physical node:∑
n′

φni

n′ ≤ 1, ∀ni ∈ N i. (3)

• If SFC request i is accepted, the path mapped in the

physical network should traverse through VNFs following

the order specified in the request. We denote I(n′) and

O(n′) as the set of incoming and outgoing links of

physical node n′, ni
s and ni

d denote the source and

destination VNF of the virtual link li. We have:∑
l′∈I(n′)

φli

l′ −
∑

l′∈O(n′)

φli

l′ = φ
ni
d

n′ − φ
ni
s

n′ , ∀li ∈ Li, l′ ∈ L′.

(4)

In this paper, we assume that the InP charges SFCs by the

“pay-as-you-go” pricing model which has been widely used in

the cloud platform, the revenue obtained by each SFC request

i is defined as:

rev(i) =

{
μk

∑
ni rni,k + η

∑
li bli , if i is accepted,

0, otherwise,
(5)

where μk is the unit price of resource k in physical nodes,

and η is the unit price of bandwidth.
We use R(π) to denote the long-term average revenue,

which is given by:

R(π) = lim
τ→∞

1

τ

∑
i∈Iτ

rev (i), (6)

where Iτ = {i | 0 < ti < τ} denotes the SFCs that arrive

before time τ .

Our objective is to find a policy that maximizes the long-

term average rate:

π∗ = argmax
π

R(π). (7)

III. DRL-SFCP APPROACH

A. MDP Formulation

Under the DRL framework, the interaction between agent

and environment is defined as MDP. We cast the placement

of each SFC request i as a finite-horizon MDP. The agent

consecutively selects consecutively physical nodes to place∣∣N i
∣∣ VNFs until the horizon T =

∣∣N i
∣∣ is reached. At each

time step t (t = 1, . . . , T), we define three key elements: state,

action and reward as follows:

1) State: The state should include both the current physical

network situation and the requirement of SFC request. Thus,

we define the state as st = (spt , s
r
t). Here, spt = (A,X) is

the current state of physical network, where A ∈ R
|N ′|×|N ′|

is the adjacent matrix of network and X ∈ R
|N ′|×M is the

feature matrix of physical nodes: i) Each row of X refers

to a M -dimensional feature vector of physical node n′. In

this paper, we concatenate the remaining resources Rr
n′ , max-

imum resources Rm
n′ , the sum of remaining bandwidth Sr

n′ =∑
l′∈L(n′) B

r
l′ and maximum bandwidth Sm

n′ =
∑

l′∈L(n′) B
m
l′

of adjacent links L(n′) as features of each physical server, and

normalize them into [0, 1]; ii) srt is the current state of SFC

request, which consists of the requested amount of resources

rni
t

of t-th VNF, required bandwidth blit of t-th virtual link

and the number of VNFs remaining to be placed.

2) Action: The action set is defined as: At = {ζ} ∪ {n′ ∈
N ′|rni

t,k
≤ Rr

n′,k, ∀k ∈ K}. An action at selects a node

n′ from candidate physical servers whose available resources

exceed requirements requested by VNF ni
t. Otherwise, at = ζ

forces the transition to the terminal state.

3) Reward: The reward signal is designed to encourage the

agent to place SFCs with the aim of maximizing the long-

term average revenue. To this end, when the SFC request i
is accepted at time step t = T , the agent receives the reward

rt = revi, where revi = μk

∑
ni rni,k + η

∑
li bli . In the

intermediate steps (i.e., t < T), the agent receives a small

reward rt = ξrevi when resources constraints are satisfied

and rt = −ξrevi otherwise, where ξ is the reward coefficient.

B. Model Architecture

The model architecture of DRL-SFCP, illustrated in Fig. 2,

consists of three components: i) Embedding of physical net-

work; ii) Embedding of SFC request and iii) Policy generation.

We will explain the components in detail.

1) Embedding of physical network: To explore the non-

Euclidean structure of network topology, we utilize GCN

[10] based on semi-supervised learning to extract features of

physical network. At each time step t, the current state of

physical network spt = (A,X) is fed into a GCN layer to learn

a new representation matrix Zt ∈ R
|N ′|×Ugcn , where Ugcn is

Fig. 2. The network architecture of DRL-SFCP.

the units number of GCN layer. The arithmetic operation of

GCN is briefly formalized as:

Zt = GCN(spt) = σ(D̃−1/2ÃD̃−1/2XW), (8)

where σ is the activation function, W is the trainable param-

eters. D̃−1/2ÃD̃−1/2 is the approximated graph convolution

filter that is similar to the convolutional neural network (CNN).

D̃ii =
∑

j Ãij and Ã = A + Λ is the adjacency matrix

of physical network G′ with added self-connections using a

renormalization trick, where Λ is the identity matrix.

2) Embedding of SFC request: To capture the orderly

requirement of SFC requests, we utilize the encoder of

Seq2Seq model which is implemented by gated recurrent unit

(GRU) network in this paper. It takes a sequence of inputs

sr = (sr1, . . . , s
r
T) and generates the hidden state et. For a

given time step t, the GRU cell takes the current input srt as

well as the hidden state of last time step et−1 as the input,

and then outputs the hidden state et of the current time step:

et = GRU(srt , et−1). (9)

The details of GRU are described as follows:

rt = σ(Wrs
r
t + Vret−1 + br), (10)

zt = σ(Wzs
r
t + Vzet−1 + bz), (11)

ẽt = tanh(Wes
r
t + Ve(rt � et−1) + be), (12)

et = zt � et−1 + (1− zt)� ẽt, (13)

where rt, zt, ẽt denote the reset gate, update gate and candi-

date hidden state, respectively; {W,V, b} are the parameters of

the corresponding unit; σ(·) is the sigmoid activation function;

� denotes the element-wise multiplication.

3) Policy generation: We employ the attentional decoder

of Seq2Seq model to generate the appropriate actions. The

decoder takes the last state from the encoder eT , and generate

an output of size T , a = (a1, . . . , aT), based on the current

state of the decoder dt and action at−1:

dt =

{
GRU(at−1, dt−1), t �= 1,

GRU(∅, eT), t = 1.
(14)

To infer a reasonable placement order for a SFC request,

context-based attention mechanism [11] is utilized to calculate

the correlations between input sequence and output sequence.

The context vector is computed as a weighted sum of ej which

is given by:

ct =

T∑
j=1

αt,jej . (15)

The weight αt,j of each ej is defined as follows:

αt,j =
exp(score(dt, ej))∑T

j′=1 exp(score(dt, ej′))
. (16)

Here, score(dt, ej) measures how well the inputs around

position j and the output at position t match, calculated as:

score(dt, ej) = vTa tanh(Wa[dt; ej]), (17)

where “;” means the concatenation of two vectors, vTa and Wa

are trainable variables.

To obtain the probability distribution over candidate actions,

we intuitively concatenate the current state of the decoder dt,
the current context vector ct and the flattened output of GCN

layer Zt, and then transform it into a fully connected layer to

make the final output accordant with the number of physical

network nodes. The agent executes an action at to select a

physical node to accommodate the current VNF based on the

conditional probability which is given by:

π[·|{a1, . . . , at−1}, dt, ct, Zt] = softmax(d̃t), (18)

where d̃t = vTb tanh(Wb[dt; ct;Zt]).

Furthermore, we leverage the Dijkstra algorithm to find the

shortest path connecting at and at−1 in the physical network.

If there is a path pt satisfying the bandwidth demand of

virtual link, the current VNF is successfully placed onto at;
Otherwise, the current SFC fails to be placed and the physical

resources previously occupied by it are released.

C. Training Method

We employ the well-known A3C [12] approach to accelerate

the speed of training and improve the robustness of model.

A3C is a “master-worker” parallel training architecture com-

posed of multiple worker agents U and a master agent. Each

agent contains two networks: i) The actor network maintains

a parameterized placement policy πθ(at|st) and generates an

action according to the current state; ii) The critic network

estimates the Q-value with Vω(st, at) to evaluate whether the

action performs well or poorly. After fetching the global shared

parameters from the master agent, each agent u ∈ U initializes

its own parameters θu and ωu using θ and ω, explores the

environment to collect experiences, and then send them to the

master agent to update global shared parameters.

At each time step t, each agent selects an action at ac-

cording to the stochastic policy πθu(at|st) and interacts with

the environment to obtain the reward rt and the next state

st+1. The critic network calculates the temporal difference

(TD) error to evaluate the new state, which is given by:

A(at, st) = rt + γVω(st+1)− Vω(st), (19)

Algorithm 1: DRL-SFCP with Parallel Training

Input : The physical network topology G′ = (N ′, L′); The
SFC request Gi = (N i, Li); The maximum number
of iterations maxIter;

Output: placementResult; actionSet; pathSet

1 /**Training Process**/
2 Initialize iter ← 0;
3 Initialize the parameters of the master agent θ and ω;
4 Initialize the independent environments for worker agents U ;
5 while iter < maxIter do
6 for u in U do
7 Synchronize parameters θu ← θ and ωu ← ω;
8 Receive a SFC request;
9 Sample a trajectory using Eq. (18);

10 Obtain the reward rt and calculate the TD error
using Eq. (19);

11 Update the parameter of critic ω using Eq. (20);
12 Adjust the policy of actor πθ(a|s) using Eq. (21);
13 end
14 iter++;
15 end
16 /**Testing Process**/
17 Initialize actionSet ← ∅, pathSet ← ∅;
18 Initialize the trained actor network with θ;

19 Input the state sr of Gi to the encoder;
20 for t = 1, . . . , T do
21 Get the current state spt of G′;
22 Extract the features Zt of G′ by GCN;
23 Run decoder to select an action at;

24 if at == ζ then
25 Undo all the previous placements;
26 return false, ∅, ∅;
27 end
28 if t == 1 then
29 Place the VNF ni

t onto the physical node at;
30 actionSet.add(at);
31 Update the state of G′ to spt+1;
32 continue;
33 end
34 Seek pt between at and at−1 according to Dijkstra;
35 if ∃ pt then
36 Place the VNF ni

t onto the physical node at;
37 Place the virtual link onto the physical path pt;
38 actionSet.add(at);
39 pathSet.add(pt);
40 Update the state of G′ to spt+1;
41 else
42 Undo all the previous placements;
43 return false, ∅, ∅;
44 end
45 end
46 return true, actionSet, pathSet;

where γ ∈ (0, 1) denotes the discount factor.

After processing a SFC placement completely, the critic

network updates the parameter ω by minimizing the squared

TD error loss:

ω = ω − εω
1

T

∑
t

∇ωA(at, st)
2
, (20)

where εω is the learning rate of the critic network.

The actor network updates the policy parameter θ by

TABLE I

SIMULATION PARAMETERS

Name Value Description
U 4 the number of actor networks
μk 0.001 the unit price of resource k
η 0.001 the unit price of bandwidth
εθ 0.00025 the learning rate of actor
εω 0.0005 the learning rate of critic
γ 0.95 the discount factor of TD error
ξ 0.125 the reward coefficient
B 64 the batch size

Ugcn, Uemd,
Uenc, Udec

64
the units number of GCN layer,
embbeding layer, encoder hidden
states and decoder hidden states

maximizing the accumulated reward:

θ = θ + εθ
1

T

∑
t

∇θlogπθ(at|st)A(at, st), (21)

where εθ denotes the learning rate of the actor network

and logπθ(at|st)A(at, st) represents the cross-entropy loss

weighted by TD error.

The complete execution process of our DRL-SFCP approach

is shown in Algorithm 1.

IV. PERFORMANCE EVALUATION

A. Experimental Setup

We randomly generate a physical network with 100 nodes

and 500 links, following the Waxman topology model [13],

which imitates a medium-sized InP. The resources of nodes

and the bandwidth of links in the physical network are

uniformly distributed with 50 to 100 units. In each episode,

2000 SFC requests arrive at the system sequentially according

to a Poisson process with an average arriving rate of 20 per 100

time units. Specifically, each SFC request consists of different

numbers of VNFs from 2 to 15 according to the uniform

distribution and has a lifetime exponentially distributed with

an average of 400. The node and link resources demand of

SFC requests are to the uniform distribution of 2 to 30.

The whole model architecture is built with Tensorflow and

Adam optimizer is employed to update the parameters of

neural networks. Our simulation experiments are executed on

a computer with 2.90 GHz Intel Core i7-10700F CPU and 16

GB RAM. In the training phase, actors utilize ε-greedy search

strategy to select actions according to the probability distribu-

tions, which facilitates to sufficient exploration and excellent

exploitation. In the testing phase, only the actor network of

the trained agent works to place 2,000 SFC requests, using the

greedy search strategy. The values of simulation parameters 1

are given in Table I.

B. Baseline Algorithms

To verify the effectiveness of the proposed DRL-SFCP

approach, we select the following two approaches for com-

parison:

1The souce code can be found at https://github.com/GeminiLight/drl-sfcp.

• GRC [6]: A heuristic-based algorithm based on global

resource capacity to map VNFs onto physical nodes.

• MCTS [8]: A RL-based algorithm using Monte Carlo tree

search to make the SFC placement decision.

Both of them utilizes the shortest path algorithm to conduct

link mapping.

C. Experiment Results

Fig. 3 depicts the variation of actor loss and critic loss in

the training process. We observe both actor loss and critic loss

converge to local optimums of 0.05 and 0.002 at the 8000-th

training step. It implies that the approximation with DNNs in

DRL-SFCP works well.

The acceptance ratio of all the three algorithms in testing

phase is illustrated in Fig. 4. We can observe that at the

beginning, the acceptance ratios of all the three algorithms

decrease because the resources of the physical network are

gradually occupied as SFC requests arrive. DRL-SFCP brings

about the highest acceptance ratio of 69.9% at the back half

of testing phase. Compared to GRC and MCTS, DRL-SFCP

improves performance up to 11.6% and 5.2%.

In Fig. 5, we compare the average revenue for all the three

algorithms as SFC requests arrive sequentially. After process-

ing 2000 SFC requests, DRL-SFCP achieves the highest long-

term average revenue of 0.062, up to 9.6% and 4.5% better

than GRC and MCTS. It indicates that our algorithm could

make SFC placement decisions intelligently assisted by the

inherent information of physical network and SFC requests.

To simulate the demand variance of SFC requests between

the busy hour and the idle hour, we increase the arrival rate

of SFC requests from an average of 10 arrivals to 24 arrivals

per 100 time units, rising by 2 in each step. Fig. 6 and Fig. 7

illustrate the acceptance ratio and the long-term average rev-

enue under different arrival rates. It shows that the acceptance

ratio decreases and the long-term average revenue grows as

the arrival rate increases. Moreover, DRL-SFCP outperforms

GRC and MCTS with an average of 8.8% and 4.0% on

acceptance ratio, and 9.0% and 4.4% in terms of average

revenue. This superior performance might be attributed to the

excellent abilities of fitting and generalization of DNN.

The average running time of all the three algorithms for

processing a SFC request with different length is depicted in

Fig. 8. It shows that with the increase of SFC request’s length,

DRL-SFCP and GRC make SFC placement decisions faster

while the running time of MCTS always maintains a high

level. It demonstrates that our algorithm is well-suited for the

application in online scenarios.

V. CONCLUSION

In this paper, we have proposed a novel DRL-based ap-

proach named DRL-SFCP for SFC placement problem by

modeling it as a MDP. DRL-SFCP combines both GCN and

Seq2Seq model to extract the features of the physical network

and the SFC request. Additionally, We have utilized A3C

algorithm to accelerate the speed of the training procedure

and enhance the robustness of our model. Benefiting from

Fig. 3. Losses variation during training. Fig. 4. Acceptance ratio over different

SFC requests.

Fig. 5. Average revenue over different

SFC requests.

Fig. 6. Acceptance ratio over different

arrival rates.

Fig. 7. Average revenue over different

arrival rates.

Fig. 8. Average running time over differ-

ent length of SFC.

the sufficient information captured from the state, DRL-SFCP

can generate SFC placement strategies intelligently, which

contributes to improving the resource utilization of physical

network. Experimental results have shown that our proposed

DRL-SFCP makes placement decisions within acceptable time

and outperforms the other existing algorithms in terms of the

acceptance ratio and the long-term average revenue.

ACKNOWLEDGEMENTS

This work is supported in part by Major Special Pro-

gram for Technical Innovation & Application Development of

Chongqing Science & Technology Commission (No. CSTC

2019jscx-zdztzxX0031), National NSFC (No. 61902044,

62072060, 61902178), Fundamental Research Funds for the

Central Universities (No. 2020CDJQY-A001, 2020CDJQY-

A022, 2018CDXYRJ0030), National Key R & D Program of

China (No. 2018YFF0214700, 2018YFB2100100), Chongqing

Research Program of Basic Research and Frontier Technology

(No. cstc2019jcyj-msxmX0589, cstc2018jcyjAX0340), NSF

of Jiangsu (No. BK20190295), Leading Technology of Jiangsu

Basic Research Plan (No. BK20192003) and EU’s Horizon

2020 Programme under the Marie Skłodowska-Curie (No.

898588).

REFERENCES

[1] L. Sanabria-Russo, D. Pubill, J. Serra, and C. Verikoukis, “Iot data
analytics as a network edge service,” in Proc. IEEE INFOCOM, Oct.
2019, pp. 969–970.

[2] I. Sarrigiannis, K. Ramantas, E. Kartsakli, P. Mekikis, A. Antonopoulos,
and C. Verikoukis, “Online vnf lifecycle management in an mec-enabled
5g iot architecture,” IEEE Internet of Things Journal, vol. 7, no. 5, pp.
4183–4194, 2020.

[3] P. Pan, Q. Fan, S. Wang, X. Li, J. Li, and W. Shi, “Gcn-td: A learning-
based approach for service function chain deployment on the fly,” in
Proc. IEEE GLOBECOM, Dec. 2020, pp. 1–6.

[4] I. Jang, D. Suh, S. Pack, and G. Dán, “Joint optimization of service
function placement and flow distribution for service function chaining,”
IEEE Journal on Selected Areas in Communications, vol. 35, no. 11,
pp. 2532–2541, 2017.

[5] A. Tomassilli, F. Giroire, N. Huin, and S. Pérennes, “Provably efficient
algorithms for placement of service function chains with ordering
constraints,” in Proc. IEEE INFOCOM, Apr. 2018, pp. 774–782.

[6] L. Gong, Y. Wen, Z. Zhu, and T. Lee, “Toward profit-seeking virtual
network embedding algorithm via global resource capacity,” in Proc.
IEEE INFOCOM, Apr. 2014, pp. 1–9.

[7] M. F. Bari, S. R. Chowdhury, R. Ahmed, R. Boutaba, and O. M. B.
Duarte, “Orchestrating virtualized network functions,” IEEE Transac-
tions on Network and Service Management, vol. 13, pp. 725–739, 2016.

[8] S. Haeri and L. Trajković, “Virtual network embedding via monte carlo
tree search,” IEEE Transactions on Cybernetics, vol. 48, no. 2, pp. 510–
521, 2018.

[9] R. Solozabal, J. Ceberio, A. Sanchoyerto, L. Zabala, and F. Liberal,
“Virtual network function placement optimization with deep reinforce-
ment learning,” IEEE Journal on Selected Areas in Communications,
vol. PP, no. 99, pp. 1–1, 2019.

[10] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[11] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” in Proc. ICLR, May. 2015.

[12] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep
reinforcement learning,” in Proc. ICML, Jun. 2016, pp. 1928–1937.

[13] Z. Yan, J. Ge, Y. Wu, L. Li, and T. Li, “Automatic virtual network
embedding: A deep reinforcement learning approach with graph convo-
lutional networks,” IEEE Journal on Selected Areas in Communications,
vol. 38, no. 6, pp. 1040–1057, 2020.

